We examined components of the coagulation system in 30 neonates (age, 1 to 30 days) undergoing deep hypothermic cardiopulmonary bypass (CPB). A coagulation profile consisting of activated clotting time; prothrombin time; partial thromboplastin time; factors II, V, VII, VIII, IX, X, and I (fibrinogen); antithrombin III; platelet count; and heparin levels was evaluated before bypass, at three intervals during bypass (1 minute after initiation of bypass, stable hypothermic CPB, warm CPB), after weaning from CPB and administration of protamine, and 2 to 3 hours after skin closure. The initiation of CPB resulted in a 50% decrease in circulating coagulation factors and antithrombin III levels. Platelet counts were reduced by 70% with CPB initiation. Neither deep hypothermic temperatures nor prolonged exposure to extracorporeal surfaces had any additional effect on the coagulation profiles. This suggests that the coagulation system of a neonate undergoing CPB is profoundly and globally effected by hemodilution. We believe that treatment of post-CPB coagulopathy in neonates must address these global deficits.
Although much has been learned about cerebral physiology during CPB in the past decade, the role of alterations in CBF and CMRO2 during CPB and the unfortunately common occurrence of neuropsychologic injury still is understood incompletely. It is apparent that during CPB temperature, anesthetic depth, CMRO2, and PaCO2 are the major factors that effect CBF. The systemic pressure, pump flow, and flow character (pulsatile versus nonpulsatile) have little influence on CBF within the bounds of usual clinical practice. Although cerebral autoregulation is characteristically preserved during CPB, untreated hypertension, profound hypothermia, pH-stat blood gas management, diabetes, and certain neurologic disorders may impair this important link between cerebral blood flow nutrient supply and metabolic demand (Figure 5). During stable moderate hypothermic CPB with alpha-stat management of arterial blood gases, hypothermia is the most important factor altering cerebral metabolic parameters. Autoregulation is intact and CBF follows cerebral metabolism. Despite wide variations in perfusion flow and systemic arterial pressure, CBF is unchanged. Populations of patients have been identified with altered cerebral autoregulation. To what degree the impairment of cerebral autoregulation contributes to postoperative neuropsychologic dysfunction is unknown. It must be emphasized that not the absolute level of CBF, but the appropriateness of oxygen delivery to demand is paramount. However, the assumption that the control of cerebral oxygen and nutrient supply and demand will prevent neurologic injury during CPB is simplistic. A better understanding of CBF, CMRO2, autoregulation and mechanism(s) of cerebral injury during CPB has lead to a scientific basis for many of the decisions made regarding extracorporeal perfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.