The activation of mammalian origins of replication depends so far on ill understood epigenetic events, such as binding of transcription factors, chromatin structure, and nuclear localization. Understanding these mechanisms is not only a scientific challenge but also represents a prerequisite for the rational design of nonviral episomal vectors for mammalian cells. In this paper, we demonstrate that a tetramer of a 155-bp minimal nuclear scaffold͞matrix attached region DNA module linked to an upstream transcription unit is sufficient for replication and mitotic stability of a mammalian episome in the absence of selection. Fluorescence in situ hybridization analyses, crosslinking with cis-diammineplatinum(II)-dichloride and chromatin immunoprecipitation demonstrate that this vector associates with the nuclear matrix or scaffold in vivo by means of specific interaction of the nuclear scaffold͞matrix attached region with the nuclear matrix protein SAF-A. Results presented in this paper define the minimal requirements of an episomal vector for mammalian cells on the molecular level.DNA replication ͉ mitotic stability ͉ nuclear matrix ͉ SAF-A
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by expanded CAG repeats in the huntingtin (HTT) gene. Although several palliative treatments are available, there is currently no cure and patients generally die 10-15 y after diagnosis. Several promising approaches for HD therapy are currently in development, including RNAi and antisense analogs. We developed a complementary strategy to test repression of mutant HTT with zinc finger proteins (ZFPs) in an HD model. We tested a "molecular tape measure" approach, using long artificial ZFP chains, designed to bind longer CAG repeats more strongly than shorter repeats. After optimization, stable ZFP expression in a model HD cell line reduced chromosomal expression of the mutant gene at both the protein and mRNA levels (95% and 78% reduction, respectively). This was achieved chromosomally in the context of endogenous mouse HTT genes, with variable CAG-repeat lengths. Shorter wild-type alleles, other genomic CAG-repeat genes, and neighboring genes were unaffected. In vivo, striatal adeno-associated virus viral delivery in R6/2 mice was efficient and revealed dose-dependent repression of mutant HTT in the brain (up to 60%). Furthermore, zinc finger repression was tested at several levels, resulting in protein aggregate reduction, reduced decline in rotarod performance, and alleviation of clasping in R6/2 mice, establishing a proof-of-principle for synthetic transcription factor repressors in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.