The epigenetic phenomenon of genomic imprinting provides an additional level of gene regulation that is confined to a limited number of genes, frequently, but not exclusively, important for embryonic development. The evolution and maintenance of imprinting has been linked to the balance between the allocation of maternal resources to the developing fetus and the mother's well being. Genes that are imprinted in both the embryo and extraembryonic tissues show extensive conservation between a mouse and a human. Here we examine the human orthologues of mouse genes imprinted only in the placenta, assaying allele-specific expression and epigenetic modifications. The genes from the KCNQ1 domain and the isolated human orthologues of the imprinted genes Gatm and Dcn all are expressed biallelically in the human, from first-trimester trophoblast through to term. This lack of imprinting is independent of promoter CpG methylation and correlates with the absence of the allelic histone modifications dimethylation of lysine-9 residue of H3 (H3K9me2) and trimethylation of lysine-27 residue of H3 (H3K27me3). These specific histone modifications are thought to contribute toward regulation of imprinting in the mouse. Genes from the IGF2R domain show polymorphic concordant expression in the placenta, with imprinting demonstrated in only a minority of samples. Together these findings have important implications for understanding the evolution of mammalian genomic imprinting. Because most human pregnancies are singletons, this absence of competition might explain the comparatively relaxed need in the human for placentalspecific imprinting.histones ͉ methylation ͉ epigenetics
Genomic imprinting is limited to a subset of genes that play critical roles in fetal growth, development and behaviour. One of the most studied imprinted genes encodes insulin-like growth factor 2, and aberrant imprinting and DNA methylation of this gene is associated with the growth disorders Beckwith-Wiedemann and Silver-Russell syndromes and many human cancers. Specific isoforms of this gene have been shown to be essential for normal placental function, as mice carrying paternal null alleles for the Igf2-P0 transcript are growth restricted at birth. We report here the identification of three novel human transcripts from the IGF2 locus. One is equivalent to the mouse Igf2-P0 transcript, whereas the two others (INSIGF long and short) originate from the upstream INS gene that alternatively splices to downstream IGF2 exons. In order to elucidate the molecular mechanisms involved in the complex imprinting of these novel IGF2 transcripts, both the allele-specific expression and methylation for all the IGF2 promoters including P0 and the INSIGF transcripts were analysed in human tissues. Similar to the mouse, the human IGF2-P0 transcript is paternally expressed; however, its expression is not limited to placenta. This expression correlates with tissue-specific promoter methylation on the maternal allele. The two novel INSIGF transcripts reported here use the INS promoter and show highly restricted tissue expression profiles including the pancreas. As previously reported for INS in the yolk sac, we demonstrate complex, tissue-specific imprinting of these transcripts. The finding of additional transcripts within this locus will have important implications for IGF2 regulation in both cancer and metabolism.
Progesterone acts to maintain uterine quiescence during pregnancy. In contrast to many other species, no decrease in maternal serum levels of progesterone can be observed in humans before the onset of labour. Therefore, a 'functional' progesterone withdrawal in association with labour has been proposed. In humans the progesterone receptor (PR) exists in two isoforms, PR-A and PR-B. While PR-B generally mediates the effects of progesterone upon gene transcription, the role of PR-A during pregnancy, and in parturition, is unknown. In this study, term myometrium cells cultured before the onset of labour were transiently transfected with expression vectors for either PR-A or PR-B. Only those cells expressing PR-B significantly increased expression of a progesterone-sensitive reporter when stimulated with progesterone. Co-transfection of both isoforms of PR demonstrated that PR-A is a dominant repressor of transactivation in these cells. Western blot analysis showed that PR-A is present in human myometrium samples taken only after, but not before, the onset of labour. These data suggest that increased expression of PR-A in human myometrium may contribute to 'functional' progesterone withdrawal and the initiation of human labour.
Serum levels of IGF-I and IGF-binding protein (IGFBP-1) have been determined in the maternal circulation between 11 and 42 weeks of gestation in women not in labour (n = 335) and in the maternal and fetal circulations at the time of delivery between 37 and 42 weeks (n = 55). Maternal serum (MS) IGF-I levels increased during pregnancy and showed a significant positive correlation with maternal weight (P = 0.0033) but no correlation with birthweight. The MS IGFBP-1 levels did not change during the second and third trimesters and showed a negative correlation with birthweight, maternal weight, placental weight and MS glucose (P = 0.0002, P < 0.0001, P = 0.047, P = 0.024 respectively). MS IGFBP-1 levels were higher in small-for-gestational age babies than in average-for-gestational weight babies (P = 0.026) and lower in the large-for-gestational weight group (P = 0.048). There was a significant rise in mean MS IGFBP-1 levels during labour (P = 0.0005). These findings suggest that IGFBP-1 may be an important factor in pathological growth retardation.
The findings show WBC has a negative impact on muscle function, perceptions of soreness and a number of blood parameters compared to CWI, contradicting the suggestion that WBC may be a superior recovery strategy. Further, cryotherapy is no more effective than a placebo intervention at improving functional recovery or perceptions of training stress following a marathon. These findings lend further evidence to suggest that treatment belief and the placebo effect may be largely responsible for the beneficial effects of cryotherapy on recovery following a marathon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.