Cholecalciferol supplementation, by a dose that effectively increased vitamin D levels, did not reduce 24-h BP, although central systolic BP decreased significantly. In a post-hoc subgroup analysis of 92 subjects with baseline p-25(OH)D levels <32 ng/ml, significant decreases in 24-h systolic and diastolic BP occurred during cholecalciferol supplementation.
BackgroundPatients on chronic dialysis are at increased risk of vitamin D deficiency. In observational studies plasma 25-hydroxyvitamin D (p-25(OH) D) levels are inversely correlated with plasma BNP and adverse cardiovascular outcomes. Whether a causal relation exists has yet to be established. The aim of this study was to test the hypothesis that cholecalciferol supplementation improves cardiac function and reduces blood pressure (BP) and pulse wave velocity (PWV) in patients on chronic dialysis.MethodsIn a randomized, placebo-controlled, double-blind study, we investigated the effect of 75 μg (3000 IU) cholecalciferol daily for 6 months, in patients on chronic dialysis. We performed two-dimensional echocardiography, with doppler and tissue-doppler imaging, 24-h ambulatory BP (24-h BP), PWV, augmentation index (AIx), central BP (cBP) and brain natriuretic peptide (BNP) measurements at baseline and after 6 months.ResultsSixty-four patients were allocated to the study. Fifty dialysis patients with a mean age of 68 years (range: 46–88) and baseline p-25(OH) D of 28 (20;53) nmol/l completed the trial. Cholecalciferol increased left ventricular (LV) volume, but had no impact on other parameters regarding LV structure or left atrial structure. LV systolic function, LV diastolic function, PWV, cBP, AIx and BNP were not changed in placebo or cholecalciferol group at follow-up. 24-h BP decreased significantly in placebo group and tended to decrease in cholecalciferol group without any difference between treatments.ConclusionSix months of cholecalciferol treatment in patients on chronic dialysis did not improve 24-h BP, arterial stiffness or cardiac function.Trial registrationNCT01312714, Registration Date: March 9, 2011.
BackgroundLow 25‐hydroxyvitamin D levels are associated with an increased risk of cardiovascular events, but the effect of vitamin D supplementation on markers of vascular function associated with major adverse cardiovascular events is unclear.Methods and ResultsWe conducted a systematic review and individual participant meta‐analysis to examine the effect of vitamin D supplementation on flow‐mediated dilatation of the brachial artery, pulse wave velocity, augmentation index, central blood pressure, microvascular function, and reactive hyperemia index. MEDLINE, CINAHL, EMBASE, Cochrane Central Register of Controlled Trials, and http://www.ClinicalTrials.gov were searched until the end of 2016 without language restrictions. Placebo‐controlled randomized trials of at least 4 weeks duration were included. Individual participant data were sought from investigators on included trials. Trial‐level meta‐analysis was performed using random‐effects models; individual participant meta‐analyses used a 2‐stage analytic strategy, examining effects in prespecified subgroups. 31 trials (2751 participants) were included; 29 trials (2641 participants) contributed data to trial‐level meta‐analysis, and 24 trials (2051 participants) contributed to individual‐participant analyses. Vitamin D3 daily dose equivalents ranged from 900 to 5000 IU; duration was 4 weeks to 12 months. Trial‐level meta‐analysis showed no significant effect of supplementation on macrovascular measures (flow‐mediated dilatation, 0.37% [95% confidence interval, −0.23 to 0.97]; carotid‐femoral pulse wave velocity, 0.00 m/s [95% confidence interval, −0.36 to 0.37]); similar results were obtained from individual participant data. Microvascular function showed a modest improvement in trial‐level data only. No consistent benefit was observed in subgroup analyses or between different vitamin D analogues.ConclusionsVitamin D supplementation had no significant effect on most markers of vascular function in this analysis.
BackgroundTolvaptan is a selective vasopressin receptor antagonist (V2R) that increases free water excretion. We wanted to test the hypotheses that tolvaptan changes both renal handling of water and sodium and systemic hemodynamics during basal conditions and during nitric oxide (NO)-inhibition with L-NG-monomethyl-arginine (L-NMMA).MethodsNineteen healthy subjects were enrolled in a randomized, placebo-controlled, double-blind, crossover study of two examination days. Tolvaptan 15 mg or placebo was given in the morning. L-NMMA was given as a bolus followed by continuous infusion during 60 minutes. We measured urine output(UO), free water clearance (CH2O), fractional excretion of sodium (FENa), urinary aquaporin-2 channels (u-AQP2) and epithelial sodium channels (u-ENaCγ), plasma vasopressin (p-AVP), central and brachial blood pressure(cBP, bBP).ResultsDuring baseline conditions, tolvaptan caused a significant increase in UO, CH2O and p-AVP, and FENa was unchanged. During L-NMMA infusion, UO and CH2O decreased more pronounced after tolvaptan than after placebo (-54 vs.-42% and -34 vs.-9% respectively). U-AQP2 decreased during both treatments, whereas u-ENaCγ decreased after placebo and increased after tolvaptan. CBP and bBP were unchanged.ConclusionDuring baseline conditions, tolvaptan increased renal water excretion. During NO-inhibition, the more pronounced reduction in renal water excretion after tolvaptan indicates that NO promotes water excretion in the principal cells, at least partly, via an AVP-dependent mechanism. The lack of decrease in u-AQP2 by tolvaptan could be explained by a counteracting effect of increased plasma vasopressin. The antagonizing effect of NO-inhibition on u-ENaC suggests that NO interferes with the transport via ENaC by an AVP-dependent mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.