The aim of this study was to quantify the reflex sympathetic vasoconstriction in skin at different depths. Twenty healthy subjects were studied. Finger skin blood flow was measured using laser Doppler perfusion imaging (LDPI) and laser Doppler perfusion monitoring (LDPM). In LDPM, a probe with fibres separated 0.25 mm (deep) and 0.14 mm (superficial) from the illuminating fibre was used. Local heating (40 degrees C) was achieved with a Peltier element, and reflex vasoconstriction induced by immersion of the contra-lateral hand and forearm for 3 min in water at 15 degrees C. The change in skin blood flow was measured and a vasoconstriction index (VAC: cooling/before cooling) calculated. VAC indices of LDPI, LDPM-0.25 and LDPM-0.14 were 0.60, 0.59 and 0.60, respectively. The two components of the LDPM perfusion value, blood cell velocity and concentration, were studied separately. Their contributions in LDPM-0.25 were roughly the same, whereas the velocity component dominated in LDPM-0.14, although their relative responses in the two channels were similar. We conclude that sympathetic skin vasoconstriction does not significantly differ in two compartments, as probed with fibres separated by 0.25 and 0.14 mm. Blood cell velocity is influenced in a proportional way, as is concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.