The carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope ratios of human hair can be used for the interpretation of dietary habits and nutritional status in contemporary or past populations. Although the results of bulk or segmental isotope ratio analysis of human hair have been used for the reconstruction of an individual's diet for years, only limited data of controlled dietary changes on the carbon and nitrogen isotopic composition of human hair are available. Hair of four individuals, two males and two females, who participated in a dietary change experiment for 28 days was segmentally analysed for delta(13)C and delta(15)N. The dietary change included a change from C3 to C4 plant enriched diets and a simultaneous replacement of terrestrial animal products by marine products. This resulted in an increase in delta(13)C(diet) of +8.5 to +9.9 per thousand and in delta(15)N(diet) of +1.5 to +2.2 per thousand. All subjects showed significant increases in delta(13)C(hair) and delta(15)N(hair) during the dietary change period, although no subject reached a new steady state for either carbon or nitrogen. The change in delta(15)N(hair) was faster than the change in delta(13)C(hair) for all individuals. The magnitude of change of the isotopic composition during the dietary change period could be attributed to the degree of physical activity of the individuals, with a higher physical activity resulting in a faster change.
Dietary analysis using δ(15)N values of human remains such as bone and hair is usually based on general principles and limited data sets. Even for modern humans, the direct ascertainment of dietary δ(15)N is difficult and laborious, due to the complexity of metabolism and nitrogen fractionation, differing dietary habits and variation of δ(15)N values of food items. The objective of this study was to summarize contemporary regional experimental and global literature data to ascertain mean representative δ(15)N values for distinct food categories. A comprehensive data set of more than 12,000 analyzed food samples was summarized from the literature. Data originated from studies dealing with (1) authenticity tracing or origin control of food items, and (2) effects of fertilization or nutrition on δ(15)N values of plants or animals. Regional German food δ(15)N values revealed no major differences compared with the mean global values derived from the literature. We found that, in contrast to other food categories, historical faunal remains of pig and poultry are significantly enriched in (15)N compared to modern samples. This difference may be due to modern industrialized breeding practices. In some food categories variations in agricultural and feeding regimens cause significant differences in δ(15)N values that may lead to misinterpretations when only limited information is available.
For decades, the class of anabolic androgenic steroids has represented the most frequently detected doping agents in athletes’ urine samples. Roughly 50% of all adverse analytical findings per year can be attributed to anabolic androgenic steroids, of which about 2/3 are synthetic exogenous steroids, where a qualitative analytical approach is sufficient for routine doping controls. For the remaining 1/3 of findings, caused by endogenous steroid-derived analytical test results, a more sophisticated quantitative approach is required, as their sheer presence in urine cannot be directly linked to an illicit administration. Here, the determination of urinary concentrations and concentration ratios proved to be a suitable tool to identify abnormal steroid profiles. Due to the large inter-individual variability of both concentrations and ratios, population-based thresholds demonstrated to be of limited practicability, leading to the introduction of the steroidal module of the Athlete Biological Passport. The passport enabled the generation of athlete-specific individual reference ranges for steroid profile parameters. Besides an increase in sensitivity, several other aspects like sample substitution or numerous confounding factors affecting the steroid profile are addressed by the Athlete Biological Passport-based approach. This narrative review provides a comprehensive overview on current prospects, supporting professionals in sports drug testing and steroid physiology.
During prolonged periods of high energy expenditure (EE), restricted food intake can lead to a loss of body mass. This case study describes the preexpedition support for an unsupported 3-wk crossing of the Atacama Desert in Chile. The goals were to simulate the energy requirements of walking under varying conditions and to predict energy intake and EE to evaluate whether the expected weight loss was in acceptable limits. The expeditionist (male, 35 yr, 197 cm, basal weight 80 ± 0.5 kg) was a well-trained endurance athlete with experience of multiple expeditions. During the simulation, he walked on a treadmill at speeds of 2-7 km/hr under varying conditions of inclination (0%, 7.5%), backpack weight (0 kg, 30 kg), and altitude (sea level, simulated altitude of 3,500 m). Under all conditions, the lowest EE was observed at 5 km/ hr. Based on the simulation data, we predicted an average EE of 4,944 kcal/day for the expedition. Because energy intake was restricted to 2,249 kcal/day, we expected the expeditionist to lose considerable weight and consequently advised him to gain 5 kg of body-fat reserves. During the actual desert crossing, he covered a distance of 26 ± 7 km/day at an average speed of 3.8 ± 0.4 km/hr. Daily EE (4,817 ± 794 kcal/day) exceeded energy intake (1,771 ± 685 kcal/day), and the negative energy balance was in agreement with the actual weight loss of 10.5 kg, which was most notable in the lower trunk.
In the past people led far more strenuous, active lives than industrialized, sedentary populations do today, and conditions could be far harsher, for instance during frigid glacial conditions. These factors carry significant implications for human energy requirements and metabolism. Endurance athletes undergoing strenuous physical regimes can serve as models for such demanding conditions. This chapter reviews the influences of strenuous activity and dietary restrictions on energy and protein metabolism. The thesis is illustrated by describing a semi-controlled experiment of an expedition across a hostile environment, monitored by means of nutritional and activity records, and stable nitrogen isotope ratios (15N/14N) in hair. The results demonstrate that under demanding conditions both energy balance and protein intake lead to 15N-enrichment; dietary and metabolic effects cannot be separated. They suggest that physically demanding lifestyles, especially under harsh conditions, must be considered in the interpretation of human 15N/14N values for dietary reconstructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.