Chakarov V, Naranjo JR, Schulte-Mö nting J, Omlor W, Huethe F, Kristeva R. Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces. J Neurophysiol 102: 1115-1120, 2009. First published May 20, 2009 doi:10.1152/jn.91095.2008. Corticomuscular synchronization has been shown to occur in beta (15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30) and gamma range (30 -45 Hz) during isometric compensation of static and dynamic (periodically modulated) low-level forces, respectively. However, it is still unknown to what extent these synchronization processes in beta and gamma range are modified with increasing modulated force. We addressed this question by investigating the corticomuscular coherence (CMC) between the electroencephalogram (EEG) and electromyogram (EMG) from the first dorsal interosseus muscle (FDI) as well as the cortical and muscular spectral power during a visuomotor task where different levels of a dynamic (modulated) force were used. Seven healthy right-handed female subjects compensated dynamic forces at 8, 16, and 24% of the maximal voluntary contraction (MVC) isometrically with their right index finger. Under the three conditions investigated, we found a broad-band CMC comprising both beta and gamma range and peaking at ϳ22 Hz within the beta band. This broad-band coherence increased linearly with higher force level. A separate analysis of the gamma range CMC did not show significant modulation of the CMC by the force levels. EEG and EMG spectral power did not show any significant difference among the three force conditions. Our results favor the view that the function of beta range CMC is not specific for low-level static forces only. The sensorimotor system may resort to stronger and also broader beta-range CMC to generate stable corticospinal interaction during increased force level, as well as when compensating for dynamic modulated forces. This finding re-enforces the importance of the beta-range EEG-EMG coherence in sensorimotor integration. I N T R O D U C T I O NMuch attention has been given to the functional organization of the corticospinal system and the mechanisms of muscle control by the CNS and in particular to the universal mechanism of neuronal interaction via synchronization, which plays a relevant role in the effective coordination between the cortical motor areas and the muscles. This synchronization mechanism can be described by the coherence function for different frequency ranges. During maintained motor contraction the cortical motor areas and the muscles are synchronized in beta-range as shown in monkeys (Baker et al. 1997(Baker et al. , 1999 Fetz 1992, 1996) (Perez et al. 2006). Based on the finding that increased beta-range CMC and better performance are correlated, we suggested the betarange CMC as a mechanism for effective corticospinal interaction during static forces .Because one of the main functions of the motor cortex is to control force output (Ashe 1997), modulation of the beta-range CMC by different stati...
Several studies about noise-enhanced balance control in humans support the hypothesis that stochastic resonance can enhance the detection and transmission in sensorimotor system during a motor task. The purpose of the present study was to extend these findings in a simpler and controlled task. We explored whether a particular level of a mechanical Gaussian noise (0 -15 Hz) applied on the index finger can improve the performance during compensation for a static force generated by a manipulandum. The finger position was displayed on a monitor as a small white point in the center of a gray circle. We considered a good performance when the subjects exhibited a low deviation from the center of this circle and when the performance had less variation over time. Several levels of mechanical noise were applied on the manipulandum. We compared the performance between zero noise (ZN), optimal noise (ON), and high noise (HN). In all subjects (8 of 8) the data disclosed an inverted U-like graph between the inverse of the mean variation in position and the input noise level. In other words, the mean variation was significantly smaller during ON than during ZN or HN. The findings suggest that the application of a tactile-proprioceptive noise can improve the stability in sensorimotor performance via stochastic resonance. Possible explanations for this improvement in motor precision are an increase of the peripheral receptors sensitivity and of the internal stochastic resonance, causing a better sensorimotor integration and an increase in corticomuscular synchronization.
In the investigation of corticomuscular coherence (CMC), it remained unclear why some subjects do not present significant CMC. We predicted that such subjects will develop CMC as a result of learning as indexed by improved performance during a visuomotor task. We investigated CMC, cortical motor spectral power (SP), and performance in 14 subjects during isometric compensation of a static force or dynamic force (DF) with their right index finger. We compared data from the beginning of the experiment (Time-Period 1) and after learning (Time-Period 2). Eight subjects (Group CMC++) presented CMC during Period 1 which increased during Period 2. Six subjects (Group CMC-+) presented CMC only during Period 2. Group CMC-+ was "more desynchronized" (lower SP, and stronger task-related desynchronization) than Group CMC++. The performance was better in Group CMC++ than in Group CMC-+. Learning was associated with higher SP, higher CMC, and better performance in both groups. However, in the more complicated DF condition, Group CMC++ learned better than Group CMC-+. The present study demonstrates the presence of CMC in all subjects tested and evidence that this is due to the fact that individuals may fall into 2 different groups in terms of oscillatory motor control: Group CMC-+ presents CMC only after learning.
Direct detection of thermal and hyperpolarized (1)H-MR signal in a single acquisition and accurate spin manipulations at 1.8 and 5.5 mT were successfully demonstrated.
We present a method for recording saccadic and pursuit eye movements in the magnetic resonance tomograph designed for visual functional magnetic resonance imaging (fMRI) experiments. To reliably classify brain areas as pursuit or saccade related it is important to carefully measure the actual eye movements. For this purpose, infrared light, created outside the scanner by light-emitting diodes (LEDs), is guided via optic fibers into the head coil and onto the eye of the subject. Two additional fiber optical cables pick up the light reflected by the iris. The illuminating and detecting cables are mounted in a plastic eyepiece that is manually lowered to the level of the eye. By means of differential amplification, we obtain a signal that covaries with the horizontal position of the eye. Calibration of eye position within the scanner yields an estimate of eye position with a resolution of 0.2 degrees at a sampling rate of 1000 Hz. Experiments are presented that employ echoplanar imaging with 12 image planes through visual, parietal and frontal cortex while subjects performed saccadic and pursuit eye movements. The distribution of BOLD (blood oxygen level dependent) responses is shown to depend on the type of eye movement performed. Our method yields high temporal and spatial resolution of the horizontal component of eye movements during fMRI scanning. Since the signal is purely optical, there is no interaction between the eye movement signals and the echoplanar images. This reasonably priced eye tracker can be used to control eye position and monitor eye movements during fMRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.