Mice lacking the nuclear bile acid receptor FXR/BAR developed normally and were outwardly identical to wild-type littermates. FXR/BAR null mice were distinguished from wild-type mice by elevated serum bile acid, cholesterol, and triglycerides, increased hepatic cholesterol and triglycerides, and a proatherogenic serum lipoprotein profile. FXR/BAR null mice also had reduced bile acid pools and reduced fecal bile acid excretion due to decreased expression of the major hepatic canalicular bile acid transport protein. Bile acid repression and induction of cholesterol 7alpha-hydroxylase and the ileal bile acid binding protein, respectively, did not occur in FXR/BAR null mice, establishing the regulatory role of FXR/BAR for the expression of these genes in vivo. These data demonstrate that FXR/BAR is critical for bile acid and lipid homeostasis by virtue of its role as an intracellular bile acid sensor.
Prolonged deprivation of food induces dramatic changes in mammalian metabolism, including the release of large amounts of fatty acids from the adipose tissue, followed by their oxidation in the liver. The nuclear receptor known as peroxisome proliferator-activated receptor α (PPARα) was found to play a role in regulating mitochondrial and peroxisomal fatty acid oxidation, suggesting that PPARα may be involved in the transcriptional response to fasting. To investigate this possibility, PPARα-null mice were subjected to a high fat diet or to fasting, and their responses were compared with those of wildtype mice. PPARα-null mice chronically fed a high fat diet showed a massive accumulation of lipid in their livers. A similar phenotype was noted in PPARα-null mice fasted for 24 hours, who also displayed severe hypoglycemia, hypoketonemia, hypothermia, and elevated plasma free fatty acid levels, indicating a dramatic inhibition of fatty acid uptake and oxidation. It is shown that to accommodate the increased requirement for hepatic fatty acid oxidation, PPARα mRNA is induced during fasting in wildtype mice. The data indicate that PPARα plays a pivotal role in the management of energy stores during fasting. By modulating gene expression, PPARα stimulates hepatic fatty acid oxidation to supply substrates that can be metabolized by other tissues. J. Clin. Invest. 103:1489-1498 (1999).adipose tissue (BAT) and the liver, and to a lesser extent in the kidneys, skeletal muscle, and heart (10). Of the 3 isotypes, PPARα has been the best characterized, a fortunate consequence of the availability of PPARα-null mice (16). Studies with these mice have demonstrated that PPARα controls the expression of numerous genes related to lipid metabolism in the liver, including genes involved in mitochondrial β-oxidation, peroxisomal β-oxidation, fatty acid uptake and/or binding, and lipoprotein assembly and transport (17)(18)(19). Several functional consequences of lowered gene expression levels were observed: PPARα-null mice are refractory to peroxisome proliferators, and male mice appeared to be overly sensitive to etomoxir, an inhibitor of carnitine palmitoyltransferase I (CPTI) (16,20). A striking metabolic defect was observed in aged (8-month-old) PPARα-null mice, characterized by a sexually dimorphic dyslipidemia with pronounced adiposity in females and steatosis in males (21). Despite this great expansion of our understanding of the function of PPARα, what remains unclear is when and how, in an intact organism, the PPARα signaling pathways are triggered, and how this specifically affects lipid and carbohydrate metabolism.One physiological condition during which PPARα-dependent signaling should become challenged is fasting, because (a) huge amounts of fatty acids are delivered to the liver to be oxidized; (b) once taken up, fatty acids have to be delivered to the mitochondria for oxidation; and (c) β-oxidation is accelerated in conjunction with increased synthesis of ketone bodies.A second physiological stimulus that may challenge t...
Autophagy is a process by which cytoplasmic organelles can be catabolized either to remove defective structures or as a means of providing macromolecules for energy generation under conditions of nutrient starvation. In this study we demonstrate that mitochondrial autophagy is induced by hypoxia, that this process requires the hypoxia-dependent factor-1-dependent expression of BNIP3 and the constitutive expression of Beclin-1 and Atg5, and that in cells subjected to prolonged hypoxia, mitochondrial autophagy is an adaptive metabolic response which is necessary to prevent increased levels of reactive oxygen species and cell death.The survival of metazoan organisms is dependent upon their ability to efficiently generate energy through the process of mitochondrial oxidative phosphorylation in which reducing equivalents, derived from the oxidation of acetyl CoA in the tricarboxylic acid cycle, are transferred from NADH and FADH 2 to the electron transport chain and ultimately to O 2 , a process which produces an electrochemical gradient that is used to synthesize ATP (1). Although oxidative phosphorylation is more efficient than glycolysis in generating ATP, it carries the inherent risk of generating reactive oxygen species (ROS) 2 as a result of electrons prematurely reacting with O 2 at respiratory complex I or complex III. Transient, low level ROS production is utilized for signal transduction in metazoan cells, but prolonged elevations of ROS result in the oxidation of protein, lipid, and nucleic acid leading to cell dysfunction or death.O 2 delivery and utilization must, therefore, be precisely regulated to maintain energy and redox homeostasis.Hypoxia-inducible factor 1 (HIF-1) plays a key role in the regulation of oxygen homeostasis (2, 3). HIF-1 is a heterodimer composed of a constitutively expressed HIF-1 subunit and an O 2 -regulated HIF-1␣ subunit (4). Under aerobic conditions, HIF-1␣ is hydroxylated on proline residue 402 and/or 564 by prolyl hydroxylase 2 a dioxygenase that utilizes O 2 and ␣-ketoglutarate as co-substrates with ascorbate as co-factor in a reaction that generates succinate and CO 2 as side products (5-8). Under hypoxic conditions the rate of hydroxylation declines, either as a result of inadequate substrate (O 2 ) or as a result of hypoxia-induced mitochondrial ROS production, which may oxidize Fe(II) in the catalytic center of the hydroxylase (9, 10). Hydroxylated HIF-1␣ is bound by the von HippelLindau protein, which recruits a ubiquitin protein ligase complex that targets HIF-1␣ for proteasomal degradation (11)(12)(13)(14).HIF-1 regulates the transcription of hundreds of genes in response to hypoxia (15, 16), including the EPO (17) and VEGF (18) genes that encode proteins required for erythropoiesis and angiogenesis, respectively, which serve to increase O 2 delivery. In addition, HIF-1 controls a series of molecular mechanisms designed to maintain energy and redox homeostasis. First, HIF-1 coordinates a switch in the composition of cytochrome c oxidase (mitochondrial electron-transp...
To gain insight into the function of peroxisome proliferator-activated receptor (PPAR) isoforms in rodents, we disrupted the ligand-binding domain of the alpha isoform of mouse PPAR (mPPAR alpha) by homologous recombination. Mice homozygous for the mutation lack expression of mPPAR alpha protein and yet are viable and fertile and exhibit no detectable gross phenotypic defects. Remarkably, these animals do not display the peroxisome proliferator pleiotropic response when challenged with the classical peroxisome proliferators, clofibrate and Wy-14,643. Following exposure to these chemicals, hepatomegaly, peroxisome proliferation, and transcriptional-activation of target genes were not observed. These results clearly demonstrate that mPPAR alpha is the major isoform required for mediating the pleiotropic response resulting from the actions of peroxisome proliferators. mPPAR alpha-deficient animals should prove useful to further investigate the role of this receptor in hepatocarcinogenesis, fatty acid metabolism, and cell cycle regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.