Autophagy is a process by which cytoplasmic organelles can be catabolized either to remove defective structures or as a means of providing macromolecules for energy generation under conditions of nutrient starvation. In this study we demonstrate that mitochondrial autophagy is induced by hypoxia, that this process requires the hypoxia-dependent factor-1-dependent expression of BNIP3 and the constitutive expression of Beclin-1 and Atg5, and that in cells subjected to prolonged hypoxia, mitochondrial autophagy is an adaptive metabolic response which is necessary to prevent increased levels of reactive oxygen species and cell death.The survival of metazoan organisms is dependent upon their ability to efficiently generate energy through the process of mitochondrial oxidative phosphorylation in which reducing equivalents, derived from the oxidation of acetyl CoA in the tricarboxylic acid cycle, are transferred from NADH and FADH 2 to the electron transport chain and ultimately to O 2 , a process which produces an electrochemical gradient that is used to synthesize ATP (1). Although oxidative phosphorylation is more efficient than glycolysis in generating ATP, it carries the inherent risk of generating reactive oxygen species (ROS) 2 as a result of electrons prematurely reacting with O 2 at respiratory complex I or complex III. Transient, low level ROS production is utilized for signal transduction in metazoan cells, but prolonged elevations of ROS result in the oxidation of protein, lipid, and nucleic acid leading to cell dysfunction or death.O 2 delivery and utilization must, therefore, be precisely regulated to maintain energy and redox homeostasis.Hypoxia-inducible factor 1 (HIF-1) plays a key role in the regulation of oxygen homeostasis (2, 3). HIF-1 is a heterodimer composed of a constitutively expressed HIF-1 subunit and an O 2 -regulated HIF-1␣ subunit (4). Under aerobic conditions, HIF-1␣ is hydroxylated on proline residue 402 and/or 564 by prolyl hydroxylase 2 a dioxygenase that utilizes O 2 and ␣-ketoglutarate as co-substrates with ascorbate as co-factor in a reaction that generates succinate and CO 2 as side products (5-8). Under hypoxic conditions the rate of hydroxylation declines, either as a result of inadequate substrate (O 2 ) or as a result of hypoxia-induced mitochondrial ROS production, which may oxidize Fe(II) in the catalytic center of the hydroxylase (9, 10). Hydroxylated HIF-1␣ is bound by the von HippelLindau protein, which recruits a ubiquitin protein ligase complex that targets HIF-1␣ for proteasomal degradation (11)(12)(13)(14).HIF-1 regulates the transcription of hundreds of genes in response to hypoxia (15, 16), including the EPO (17) and VEGF (18) genes that encode proteins required for erythropoiesis and angiogenesis, respectively, which serve to increase O 2 delivery. In addition, HIF-1 controls a series of molecular mechanisms designed to maintain energy and redox homeostasis. First, HIF-1 coordinates a switch in the composition of cytochrome c oxidase (mitochondrial electron-transp...
O(2) is the ultimate electron acceptor for mitochondrial respiration, a process catalyzed by cytochrome c oxidase (COX). In yeast, COX subunit composition is regulated by COX5a and COX5b gene transcription in response to high and low O(2), respectively. Here we demonstrate that in mammalian cells, expression of the COX4-1 and COX4-2 isoforms is O(2) regulated. Under conditions of reduced O(2) availability, hypoxia-inducible factor 1 (HIF-1) reciprocally regulates COX4 subunit expression by activating transcription of the genes encoding COX4-2 and LON, a mitochondrial protease that is required for COX4-1 degradation. The effects of manipulating COX4 subunit expression on COX activity, ATP production, O(2) consumption, and reactive oxygen species generation indicate that the COX4 subunit switch is a homeostatic response that optimizes the efficiency of respiration at different O(2) concentrations. Thus, mammalian cells respond to hypoxia by altering COX subunit composition, as previously observed in yeast, but by a completely different molecular mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.