The development of realistic risk models that predict the dissemination, dispersion and persistence of potential biothreat agents have utilized nonpathogenic surrogate organisms such as Bacillus atrophaeus subsp. globigii or commercial products such as Bacillus thuringiensis subsp. kurstaki. Comparison of results from outdoor tests under different conditions requires the use of genetically identical strains; however, the requirement for isogenic strains limits the ability to compare other desirable properties, such as the behavior in the environment of the same strain prepared using different methods. Finally, current methods do not allow long-term studies of persistence or reaerosolization in test sites where simulants are heavily used or in areas where B. thuringiensis subsp. kurstaki is applied as a biopesticide. To create a set of genetically heterogeneous yet phenotypically indistinguishable strains so that variables intrinsic to simulations (e.g., sample preparation) can be varied and the strains can be tested under otherwise identical conditions, we have developed a strategy of introducing small genetic signatures ("barcodes") into neutral regions of the genome. The barcodes are stable over 300 generations and do not impact in vitro growth or sporulation. Each barcode contains common and specific tags that allow differentiation of marked strains from wild-type strains and from each other. Each tag is paired with specific real-time PCR assays that facilitate discrimination of barcoded strains from wild-type strains and from each other. These uniquely barcoded strains will be valuable tools for research into the environmental fate of released organisms by providing specific artificial detection signatures.
A variant of Bacillus thuringiensis subsp. kurstaki containing a single, stable copy of a uniquely amplifiable DNA oligomer integrated into the genome for tracking the fate of biological agents in the environment was developed. The use of genetically tagged spores overcomes the ambiguity of discerning the test material from pre-existing environmental microflora or from previously released background material. In this study, we demonstrate the utility of the genetically "barcoded" simulant in a controlled indoor setting and in an outdoor release. In an ambient breeze tunnel test, spores deposited on tiles were reaerosolized and detected by real-time PCR at distances of 30 m from the point of deposition. Real-time PCR signals were inversely correlated with distance from the seeded tiles. An outdoor release of powdered spore simulant at Aberdeen Proving Ground, Edgewood, MD, was monitored from a distance by a light detection and ranging (LIDAR) laser. Over a 2-week period, an array of air sampling units collected samples were analyzed for the presence of viable spores and using barcode-specific real-time PCR assays. Barcoded B. thuringiensis subsp. kurstaki spores were unambiguously identified on the day of the release, and viable material was recovered in a pattern consistent with the cloud track predicted by prevailing winds and by data tracks provided by the LIDAR system. Finally, the real-time PCR assays successfully differentiated barcoded B. thuringiensis subsp. kurstaki spores from wildtype spores under field conditions. T he development of sensitive and unequivocal approaches for detecting and tracking highly pathogenic bacteria has traditionally relied upon the use of nonpathogenic spore-producing Bacillus species as model organisms or simulants, whose physical and biochemical properties mimic those of the threat agent. Bacillus anthracis is a proven biothreat agent (5, 14-15, 20, 24) due its high virulence and the ability to form hardy and persistent spores, which can persist for decades in certain environments (21). Historically, nonpathogenic spore-forming bacteria such as Bacillus atrophaeus subsp. globigii have been used as surrogate organisms to simulate B. anthracis (9, 11). The physical properties of Bacillus thuringiensis subsp. kurstaki and its close genetic relatedness to B. anthracis, most notably with regard to the presence of an exosporium, which is absent from B. atrophaeus subsp. globigii, have led to recent preference for the use of B. thuringiensis subsp. kurstaki over B. atrophaeus subsp. globigii (10). However, the use of B. atrophaeus subsp. globigii and B. thuringiensis subsp. kurstaki in test sites is complicated by the fact that both organisms occur naturally in the environment (18; see also the excellent review of environmental B. thuringiensis subsp. kurstaki prevalence by Van Cuyk et al. [27]). B. thuringiensis subsp. kurstaki has a long history of use as a biopesticide, dating back to 1929 studies in the northeastern United States that showed B. thuringiensis to be effective f...
A process for the rapid development and optimization of the fermentation process for an antibotulinum neurotoxin antibody fragment (bt-Fab) production expressed in Escherichia coli was achieved via a high-throughput process proteomics and statistical experimental design. This process, using retentate chromatography-surface enhanced laser desorption/ionization mass spectrometry (RC-SELDI MS), was employed for identifying and quantifying bt-Fab antibody in complex biological samples for the optimization of microbial fermentation conditions. Five variables (type of culture media, glycerol concentration, post-induction temperature, IPTG concentration, and incubation time after induction) were statistically combined using an experimental 2(5)(-1) fractional factorial design and tested for their effects on maximal bt-Fab antibody production. When the effects of individual variables and their interactions were assessed, type of media and post-induction temperature showed statistically significant increase in yield of the fermentation process for the maximal bt-Fab antibody production. This study establishes an integral approach as a valuable tool for the rapid development of manufacturing processes for producing various biological materials. To verify the RC-SELDI MS method, a Fab-specific immuno-affinity HPLC assay developed here was also employed for the quantification of the bt-Fab antibody in crude lysate samples obtained during the fermentation optimization process. Similar results were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.