BOX-like DNA sequences are widely distributed in phytopathogenic Xanthomonas and Pseudomonas strains. REP-, ERIC-, and BOX-PCR (collectively known as rep-PCR) were used to generate genomic fingerprints of a variety ofXanthomonas and Pseudomonas isolates and to identify pathovars and strains that were previously not distinguishable by other classification methods. Analogous rep-PCR-derived genomic fingerprints were generated from purified genomic DNA, colonies on agar plates, liquid cultures, and directly from lesions on infected plants. REP-, ERIC-, and BOX-PCR-generated fingerprints of specific Xanthomonas and Pseudomonas strains were found to yield similar conclusions with regard to the identity of and relationship between these strains. This suggests that the distribution of REP-, ERIC-, and BOX-like sequences in these strains is a reflection of their genomic structure. Thus, the rep-PCR technique appears to be a rapid, simple, and reproducible method to identify and classify Xanthomonas and Pseudomonas strains, and it may be a useful diagnostic tool for these important plant pathogens.
The genus Xanthomonas contains a large number of strains, which have been characterized by a variety of phenotypic and genotypic classification methods. The Xanthomonas collection constitutes one of the largest groups of bacteria that have been characterized phylogenetically by DNA-DNA homology studies and genomic fingerprinting. Presently, a total genomic DNA-DNA homology value of 70 % represents an internationally accepted criterion to define bacterial species levels. However, the complexity of DNA-DNA reassociation kinetics methods precludes the rapid analysis of large numbers of bacterial isolates, which is imperative for molecular microbial diversity studies. Therefore, the aim of this study was to compare more facile PCR-based genomic fingerprinting techniques, such as repetitive-sequence-based (rep)-PCR and AFLP genomic fingerprinting, to DNA-DNA hybridization studies. Using three different primer sets, rep-PCR genomic fingerprint patterns were generated for 178 Xanthomonas strains, belonging to all 20 previously defined DNA-DNA homology groups, and one Stenotrophomonas maltophilia strain. In addition, AFLP genomic fingerprints were produced for a subset of 80 Xanthomonas strains belonging to the 20 DNA-DNA homology groups and for the S. maltophilia strain. Similarity values derived from rep-PCR-and AFLPgenerated fingerprinting analyses were calculated and used to determine the correlation between rep-PCR-or AFLP-derived relationships and DNA-DNA homology values. A high correlation was observed, suggesting that genomic fingerprinting techniques truly reveal genotypic and phylogenetic relationships of organisms. On the basis of these studies, we propose that genomic fingerprinting techniques such as rep-PCR and AFLP can be used as rapid, highly discriminatory screening techniques to determine the taxonomic diversity and phylogenetic structure of bacterial populations.
The advent of molecular biology in general and the polymerase chain reaction in particular have greatly facilitated genomic analyses of microorganisms, provide enhanced capability to characterize and classify strains, and facilitate research to assess the genetic diversity of populations. The diversity of large populations can be assessed in a relatively efficient manner using rep-PCR-, AFLP-, and AP-PCR/RAPD-based genomic fingerprinting methods, especially when combined with computer-assisted pattern analysis. Genetic diversity maps provide a framework to understand the taxonomy, population structure, and dynamics of phytobacteria and provide a high-resolution framework to devise sensitive, specific, and rapid methods for pathogen detection, plant disease diagnosis, as well as management of disease risk. A variety of PCR-based fingerprinting protocols such as rDNA-based PCR, ITS-PCR, ARDRA, T-RFLPs, and tRNA-PCR have been devised, and numerous innovative approaches using specific primers have been adopted to enhance both the detection and identification of phytobacteria. PCR-based protocols, combined with computer-based analysis, have provided novel fundamental knowledge of the ecology and population dynamics of bacterial pathogens, and present exciting new opportunities for basic and applied studies in plant pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.