Invasive species represent a significant threat to global biodiversity and a substantial economic burden. Burmese pythons, giant constricting snakes native to Asia, now are found throughout much of southern Florida, including all of Everglades National Park (ENP). Pythons have increased dramatically in both abundance and geographic range since 2000 and consume a wide variety of mammals and birds. Here we report severe apparent declines in mammal populations that coincide temporally and spatially with the proliferation of pythons in ENP. Before 2000, mammals were encountered frequently during nocturnal road surveys within ENP. In contrast, road surveys totaling 56,971 km from 2003-2011 documented a 99.3% decrease in the frequency of raccoon observations, decreases of 98.9% and 87.5% for opossum and bobcat observations, respectively, and failed to detect rabbits. Road surveys also revealed that these species are more common in areas where pythons have been discovered only recently and are most abundant outside the python's current introduced range. These findings suggest that predation by pythons has resulted in dramatic declines in mammals within ENP and that introduced apex predators, such as giant constrictors, can exert significant top-down pressure on prey populations. Severe declines in easily observed and/or common mammals, such as raccoons and bobcats, bode poorly for species of conservation concern, which often are more difficult to sample and occur at lower densities.invasion biology | population declines | top-down regulation | reptiles
Aim To assess the usefulness of combining climate predictors with additional types of environmental predictors in species distribution models for rangerestricted species, using common correlative species distribution modelling approaches.Location Florida, USA Methods We used five different algorithms to create distribution models for 14 vertebrate species, using seven different predictor sets: two with bioclimate predictors only, and five 'combination' models using bioclimate predictors plus 'additional' predictors from groups representing: human influence, land cover, extreme weather or noise (spatially random data).We use a linear mixed-model approach to analyse the effects of predictor set and algorithm on model accuracy, variable importance scores and spatial predictions.Results Regardless of modelling algorithm, no one predictor set produced significantly more accurate models than all others, though models including human influence predictors were the only ones with significantly higher accuracy than climate-only models. Climate predictors had consistently higher variable importance scores than additional predictors in combination models, though there was variation related to predictor type and algorithm. While spatial predictions varied moderately between predictor sets, discrepancies were significantly greater between modelling algorithms than between predictor sets. Furthermore, there were no differences in the level of agreement between binary 'presence-absence' maps and independent species range maps related to the predictor set used. Main conclusionsOur results indicate that additional predictors have relatively minor effects on the accuracy of climate-based species distribution models and minor to moderate effects on spatial predictions. We suggest that implementing species distribution models with only climate predictors may provide an effective and efficient approach for initial assessments of environmental suitability.
Models currently used to estimate patterns of species co-occurrence while accounting for errors in detection of species can be difficult to fit when the effects of covariates on species occurrence probabilities are included. The source of the estimation problems is the particular parameterization used to specify species co-occurrence probability. We develop a new parameterization for estimating patterns of co-occurrence of interacting species that allows the effects of covariates to be specified quite naturally without estimation problems. In our model, the occurrence of one species is assumed to depend on the occurrence of another, but the occurrence of the second species is not assumed to depend on the presence of the first species. This pattern of co-occurrence, wherein one species is dominant and the other is subordinate, can be produced by several types of ecological interactions (predator-prey, parasitism, and so on). A simulation study demonstrated that estimates of species occurrence probabilities were unbiased in samples of 50-100 locations and three surveys per location, provided species are easily detected (probability of detection > or = 0.5). Higher sample sizes (>200 locations) are needed to achieve unbiasedness when species are more difficult to detect. An analysis of data from treefrog surveys in southern Florida indicated that the occurrence of Cuban treefrogs, an invasive predator species, was highest near the point of its introduction and declined with distance from that location. Sites occupied by Cuban treefrogs were 9.0 times less likely to contain green treefrogs and 15.7 times less likely to contain squirrel treefrogs compared to sites without Cuban treefrogs. The detection probabilities of native treefrog species did not depend on the presence of Cuban treefrogs, suggesting that the native treefrog species are naive to the introduced species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.