The field of habitat ecology has been muddled by imprecise terminology regarding what constitutes habitat, and how importance is measured through use, selection, avoidance and other bio-statistical terminology. Added to the confusion is the idea that habitat is scale-specific. Despite these conceptual difficulties, ecologists have made advances in understanding 'how habitats are important to animals', and data from animal-borne global positioning system (GPS) units have the potential to help this clarification. Here, we propose a new conceptual framework to connect habitats with measures of animal performance itself-towards assessing habitat -performance relationship (HPR). Long-term studies will be needed to estimate consequences of habitat selection for animal performance. GPS data from wildlife can provide new approaches for studying useful correlates of performance that we review. Recent examples include merging traditional resource selection studies with information about resources used at different critical life-history events (e.g. nesting, calving, migration), uncovering habitats that facilitate movement or foraging and, ultimately, comparing resources used through different life-history strategies with those resulting in death. By integrating data from GPS receivers with other animal-borne technologies and combining those data with additional life-history information, we believe understanding the drivers of HPRs will inform animal ecology and improve conservation.
In human-dominated landscapes, species with large spatial requirements, such as large carnivores, have to deal with human infrastructure and activities within their home ranges. This is the case for the brown bear ( Ursus arctos L., 1758) in Scandinavia, which is colonizing more human-dominated landscapes, leading inevitably to an overlap between their home ranges and anthropogenic structures. In this study, we investigated fine-scale habitat selection by brown bears to examine how they deal with this potential disturbance. Using Global Positioning System (GPS) data, we studied (i) habitat selection of female brown bears within their home range and (ii) the influence of diurnal variation in human disturbance on fine-scale habitat use. As expected, females selected habitats within their home range that provided abundant food resources and minimized human-caused disturbance. In addition, our temporal analysis of habitat selection revealed an avoidance of disturbed areas and a selection of slopes by bears during periods of highest human activities, i.e., during daylight hours. We clearly demonstrate the importance of considering the fluctuations in human activity when studying habitat selection, especially at fine spatial scales. Failing to do so may considerably reduce the power to detect important fine-scale habitat-selection behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.