The mechanism by which dopaminergic neurons are selectively lost in Parkinson disease (PD) is unknown. Here we show that accumulation of alpha-synuclein in cultured human dopaminergic neurons results in apoptosis that requires endogenous dopamine production and is mediated by reactive oxygen species. In contrast, alpha-synuclein is not toxic in non-dopaminergic human cortical neurons, but rather exhibits neuroprotective activity. Dopamine-dependent neurotoxicity is mediated by 54 83-kD soluble protein complexes that contain alpha-synuclein and 14-3-3 protein, which are elevated selectively in the substantia nigra in PD. Thus, accumulation of soluble alpha-synuclein protein complexes can render endogenous dopamine toxic, suggesting a potential mechanism for the selectivity of neuronal loss in PD.
Dopamine D1-like receptors, composed of D1 and D5 receptors, have been documented to modulate glutamate-mediated fast excitatory synaptic neurotransmission. Here, we report that dopamine D1 receptors modulate NMDA glutamate receptor-mediated functions through direct protein-protein interactions. Two regions in the D1 receptor carboxyl tail can directly and selectively couple to NMDA glutamate receptor subunits NR1-1a and NR2A. While one interaction is involved in the inhibition of NMDA receptor-gated currents, the other is implicated in the attenuation of NMDA receptor-mediated excitotoxicity through a PI-3 kinase-dependent pathway.
Mutations in alpha-synuclein, a protein highly enriched in presynaptic terminals, have been implicated in the expression of familial forms of Parkinson's disease (PD) whereas native alpha-synuclein is a major component of intraneuronal inclusion bodies characteristic of PD and other neurodegenerative disorders. Although overexpression of human alpha-synuclein induces dopaminergic nerve terminal degeneration, the molecular mechanism by which alpha-synuclein contributes to the degeneration of these pathways remains enigmatic. We report here that alpha-synuclein complexes with the presynaptic human dopamine transporter (hDAT) in both neurons and cotransfected cells through the direct binding of the non-A beta amyloid component of alpha-synuclein to the carboxyl-terminal tail of the hDAT. alpha-Synuclein--hDAT complex formation facilitates the membrane clustering of the DAT, thereby accelerating cellular dopamine uptake and dopamine-induced cellular apoptosis. Since the selective vulnerability of dopaminergic neurons in PD has been ascribed in part to oxidative stress as a result of the cellular overaccumulation of dopamine or dopamine-like molecules by the presynaptic DAT, these data provide mechanistic insight into the mode by which the activity of these two proteins may give rise to this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.