Rising crude oil prices and environmental concerns have renewed interest in renewable energy. Cellulosic ethanol promises to deliver a renewable fuel from non-food feedstocks. One technical challenge producing cellulosic ethanol economically is a robust organism to utilize the different sugars present in cellulosic biomass. Unlike starch where glucose is the only sugar present, cellulosic biomass has other sugars such as xylose and arabinose, usually called C5 sugars. This review examines the most promising naturally occurring C5 fermenting organism, Pichia stipitis. In this work, the properties that make P. stipitis unique from other organisms, its physiology and fermentation results on lignocellulosic substrates have been reviewed. P. stipitis can produce 41 g ethanol/l with a potential to cleanup some of the most concentrated toxins. These results coupled with the less stringent nutritional requirements, great resistance to contamination and its thick cell walls makes P. stipitis a viable organism for scale-up. However, P. stipitis has a slower sugar consumption rate compared to Saccharomyces cerevisiae and requires microaerophilic condition for ethanol production. Finally, future studies to enhance fermentation capabilities of this yeast have been discussed.
Hemicellulose liquid hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol using Pichia stipitis CBS 6054. The fermentation rate increased with aeration but the pH also increased due to consumption of acetic acid by Pichia stipitis. Hemicellulose hydrolyzate containing 34 g/L xylose, 8 g/L glucose, 8 g/L Acetic acid, 0.73 g/L furfural, and 1 g/L hydroxymethyl furfural was fermented to 15 g/L ethanol in 72 h. The yield in all the hemicellulose hydrolyzates was 0.37-0.44 g ethanol/g (glucose + xylose). Nondetoxified hemicellulose hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol with high yields, and this has the potential to improve the economics of the biomass to ethanol process.
Pretreatment of biomass with dilute H2SO4 results in residual acid which is neutralized with alkalis such as Ca(OH)2, NaOH and NH4OH. The salt produced after neutralization has an effect on the fermentation of Pichia stipitis. Synthetic media of xylose (60 g total sugar/l) was fermented to ethanol in the presence and absence of the salts using P. stipitis CBS 6054. CaSO4 enhanced growth and xylitol production, but produced the lowest ethanol concentration and yield after 140 h. Na2SO4 inhibited xylitol production, slightly enhanced growth towards the end of fermentation but had no significant effect on xylose consumption and ethanol concentration. (NH4)2SO4 inhibited growth, had no effect on xylitol production, and enhanced xylose consumption and ethanol production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.