By means of a thermodynamic perturbation method implemented with molecular dynamics, the relative free energy of binding was calculated for the enzyme thermolysin complexed with a pair of phosphonamidate and phosphonate ester inhibitors. The calculated difference in free energy of binding was 4.21 +/- 0.54 kilocalories per mole. This compares well with the experimental value of 4.1 kilocalories per mole. The method is general and can be used to determine a change or "mutation" in any system that can be suitably represented. It is likely to prove useful for protein and drug design.
Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.2-Å crystal structure of human GPR40 (hGPR40) in complex with both the partial agonist MK-8666 and an AgoPAM, which exposes a novel lipid-facing AgoPAM-binding pocket outside the transmembrane helical bundle. Comparison with an additional 2.2-Å structure of the hGPR40-MK-8666 binary complex reveals an induced-fit conformational coupling between the partial agonist and AgoPAM binding sites, involving rearrangements of the transmembrane helices 4 and 5 (TM4 and TM5) and transition of the intracellular loop 2 (ICL2) into a short helix. These conformational changes likely prime GPR40 to a more active-like state and explain the binding cooperativity between these ligands.
Theoretical investigations of the transition structures of additions and cycloadditions reveal details about the geometries of bond-forming processes that are not directly accessible by experiment. The conformational analysis of transition states has been developed from theoretical generalizations about the preferred angle of attack by reagents on multiple bonds and predictions of conformations with respect to partially formed bonds. Qualitative rules for the prediction of the stereochemistries of organic reactions have been devised, and semi-empirical computational models have also been developed to predict the stereoselectivities of reactions of large organic molecules, such as nucleophilic additions to carbonyls, electrophilic hydroborations and cycloadditions, and intramolecular radical additions and cycloadditions.
Endomorphin-1 (Tyr-Pro-Trp-Phe-NH P ) is a highly selective and potent agonist of the W W-opioid receptor. To identify structural attributes unique to this opioid peptide and potential sites of recognition, a conformational analysis has been performed using multidimensional NMR and molecular modeling techniques. The spectroscopic results, derived from experiments in both DMSO and water, indicate that endomorphin-1 exists in the cis-and trans-configuration with respect to the Pro-omega bond in approximately 25% and 75% populations, respectively. In DMSO, the cis-configuration adopts a compact sandwich conformation in which the Tyr and Trp aromatic rings pack against the proline ring, whereas the trans-configuration adopts an extended conformation. Although non-random structure was not observed in water, condensed phase molecular dynamics calculations indicate that trans-isomers dominate the population in this higher dielectric medium. Structural comparison of the cis-and trans-configurations with morphine and selective W Wpeptide ligands PL-017 and D-TIPP, as well as the N N-selective peptide ligands TIPP (N N-antagonist, W W-agonist) and DPDPE were also performed and suggest the trans-isomer is likely the bioactive form. A hypothesis is proposed to explain W W-and N Nselectivity based on the presence of spatially distinct selectivity pockets among these ligands.z 1998 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.