BackgroundDetecting homologous protein sequences and computing multiple sequence alignments (MSA) are fundamental tasks in molecular bioinformatics. These tasks usually require a substitution matrix for modeling evolutionary substitution events derived from a set of aligned sequences. Over the last years, the known sequence space increased drastically and several publications demonstrated that this can lead to significantly better performing matrices. Interestingly, matrices based on dated sequence datasets are still the de facto standard for both tasks even though their data basis may limit their capabilities.We address these aspects by presenting a new substitution matrix series called PFASUM. These matrices are derived from Pfam seed MSAs using a novel algorithm and thus build upon expert ground truth data covering a large and diverse sequence space.ResultsWe show results for two use cases: First, we tested the homology search performance of PFASUM matrices on up-to-date ASTRAL databases with varying sequence similarity. Our study shows that the usage of PFASUM matrices can lead to significantly better homology search results when compared to conventional matrices. PFASUM matrices with comparable relative entropies to the commonly used substitution matrices BLOSUM50, BLOSUM62, PAM250, VTML160 and VTML200 outperformed their corresponding counterparts in 93% of all test cases. A general assessment also comparing matrices with different relative entropies showed that PFASUM matrices delivered the best homology search performance in the test set.Second, our results demonstrate that the usage of PFASUM matrices for MSA construction improves their quality when compared to conventional matrices. On up-to-date MSA benchmarks, at least 60% of all MSAs were reconstructed in an equal or higher quality when using MUSCLE with PFASUM31, PFASUM43 and PFASUM60 matrices instead of conventional matrices. This rate even increases to at least 76% for MSAs containing similar sequences.ConclusionsWe present the novel PFASUM substitution matrices derived from manually curated MSA ground truth data covering the currently known sequence space. Our results imply that PFASUM matrices improve homology search performance as well as MSA quality in many cases when compared to conventional substitution matrices. Hence, we encourage the usage of PFASUM matrices and especially PFASUM60 for these specific tasks.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-017-1703-z) contains supplementary material, which is available to authorized users.
BackgroundBLOSUM matrices belong to the most commonly used substitution matrix series for protein homology search and sequence alignments since their publication in 1992. In 2008, Styczynski et al. discovered miscalculations in the clustering step of the matrix computation. Still, the RBLOSUM64 matrix based on the corrected BLOSUM code was reported to perform worse at a statistically significant level than the BLOSUM62.Here, we present a further correction of the (R)BLOSUM code and provide a thorough performance analysis of BLOSUM-, RBLOSUM- and the newly derived CorBLOSUM-type matrices. Thereby, we assess homology search performance of these matrix-types derived from three different BLOCKS databases on all versions of the ASTRAL20, ASTRAL40 and ASTRAL70 subsets resulting in 51 different benchmarks in total. Our analysis is focused on two of the most popular BLOSUM matrices — BLOSUM50 and BLOSUM62.ResultsOur study shows that fixing small errors in the BLOSUM code results in substantially different substitution matrices with a beneficial influence on homology search performance when compared to the original matrices. The CorBLOSUM matrices introduced here performed at least as good as their BLOSUM counterparts in ∼75 % of all test cases. On up-to-date ASTRAL databases BLOSUM matrices were even outperformed by CorBLOSUM matrices in more than 86 % of the times. In contrast to the study by Styczynski et al., the tested RBLOSUM matrices also outperformed the corresponding BLOSUM matrices in most of the cases. Comparing the CorBLOSUM with the RBLOSUM matrices revealed no general performance advantages for either on older ASTRAL releases. On up-to-date ASTRAL databases however CorBLOSUM matrices performed better than their RBLOSUM counterparts in ∼74 % of the test cases.ConclusionsOur results imply that CorBLOSUM type matrices outperform the BLOSUM matrices on a statistically significant level in most of the cases, especially on up-to-date databases such as ASTRAL ≥2.01. Additionally, CorBLOSUM matrices are closer to those originally intended by Henikoff and Henikoff on a conceptual level. Hence, we encourage the usage of CorBLOSUM over (R)BLOSUM matrices for the task of homology search.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-1060-3) contains supplementary material, which is available to authorized users.
Fig. 1. The problem and the proposed solution for the visual analysis of patterns in mutation graphs: Top: A set of input mutation graphs. It is difficult to compare them and to identify common patterns. Middle: Visualization of the number of found patterns grouped by their structure. Bottom: User-selected relevant patterns can be examined in detail both in the input graph and in the 3D structure.Abstract-Proteins are essential parts in all living organisms. They consist of sequences of amino acids. An interaction with reactive agent can stimulate a mutation at a specific position in the sequence. This mutation may set off a chain reaction, which effects other amino acids in the protein. Chain reactions need to be analyzed, as they may invoke unwanted side effects in drug treatment. A mutation chain is represented by a directed acyclic graph, where amino acids are connected by their mutation dependencies. As each amino acid may mutate individually, many mutation graphs exist. To determine important impacts of mutations, experts need to analyze and compare common patterns in these mutations graphs. Experts, however, lack suitable tools for this purpose. We present a new system for the search and the exploration of frequent patterns (i.e., motifs) in mutation graphs. We present a fast pattern search algorithm specifically developed for finding biologically relevant patterns in many mutation graphs (i.e., many labeled acyclic directed graphs). Our visualization system allows an interactive exploration and comparison of the found patterns. It enables locating the found patterns in the mutation graphs and in the 3D protein structures. In this way, potentially interesting patterns can be discovered. These patterns serve as starting point for a further biological analysis. In cooperation with biologists, we use our approach for analyzing a real world data set based on multiple HIV protease sequences.
Natural systems often show complex dynamics. The quantification of such complex dynamics is an important step in, e.g., characterization and classification of different systems or to investigate the effect of an external perturbation on the dynamics. Promising routes were followed in the past using concepts based on (Shannon’s) entropy. Here, we propose a new, conceptually sound measure that can be pragmatically computed, in contrast to pure theoretical concepts based on, e.g., Kolmogorov complexity. We illustrate the applicability using a toy example with a control parameter and go on to the molecular evolution of the HIV1 protease for which drug treatment can be regarded as an external perturbation that changes the complexity of its molecular evolutionary dynamics. In fact, our method identifies exactly those residues which are known to bind the drug molecules by their noticeable signal. We furthermore apply our method in a completely different domain, namely foreign exchange rates, and find convincing results as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.