Although specific bacteria, dental plaque, and age are associated with periodontal disease, there are currently no reliable predictors of periodontitis severity. Studies in twins have suggested a genetic contribution to the pathogenesis of periodontitis, but previous attempts to identify genetic markers have been unsuccessful. The pro-inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) are key regulators of the host responses to microbial infection. IL-1 is also a major modulator of extracellular matrix catabolism and bone resorption. We report a specific genotype of the polymorphic IL-1 gene cluster that was associated with severity of periodontitis in non-smokers, and distinguished individuals with severe periodontitis from those with mild disease (odds ratio 18.9 for ages 40-60 years). Functionally, the specific periodontitis-associated IL-1 genotype comprises a variant in the IL-1B gene that is associated with high levels of IL-1 production. In smokers severe disease was not correlated with genotype. In this study, 86.0% of the severe periodontitis patients were accounted for by either smoking or the IL-1 genotype. This study demonstrates that specific genetic markers, that have been associated with increased IL-1 production, are a strong indicator of susceptibility to severe periodontitis in adults.
Many dental clinical implant studies have focused on the success of endosseous implants with a variety of surface characteristics. Most of the surface alterations have been aimed at achieving greater bone-to-implant contact as determined histometrically at the light microscopic level. A previous investigation in non-oral bone under short-term healing periods (3 and 6 weeks) indicated that a sandblasted and acid-etched titanium (SLA) implant had a greater bone-to-implant contact than did a comparably-shaped implant with a titanium plasma-sprayed (TPS) surface. In this canine mandible study, nonsubmerged implants with a SLA surface were compared to TPS-coated implants under loaded and nonloaded conditions for up to 15 months. Six foxhound dogs had 69 implants placed in an alternating pattern with six implants placed bilaterally in each dog. Gold crowns that mimicked the natural occlusion were fabricated for four dogs. Histometric analysis of bone contact with the implants was made for two dogs after 3 months of healing (unloaded group), 6 months of healing (3 months loaded), and after 15 months of healing (12 months loaded). The SLA implants had a significantly higher (p < 0.001) percentage of bone-to-implant contact than did the TPS implants after 3 months of healing (72.33 +/- 7.16 versus 52.15 +/- 9.19; mean +/- SD). After 3 months of loading (6 months of healing) no significant difference was found between the SLA and TPS surfaced implants (68.21 +/- 10.44 and 78.18 +/- 6.81, respectively). After 12 months of loading (15 months of healing) the SLA implants had a significantly greater percentage (p < 0.001) of bone-to-implant contact than did the TPS implants (71.68 +/- 6.64 and 58.88 +/- 4.62, respectively). No qualitative differences in bone tissue were observed between the two groups of implants nor was there any difference between the implants at the clinical level. These results are consistent with earlier studies on SLA implants and suggest that this surface promotes greater osseous contact at earlier time points compared to TPS-coated implants.
The use of endosseous dental implants as transmucosal devices necessitates the successful integration of three different tissues: bone, connective tissue, and epithelium. So far, studies have predominantly focused on hard tissue integration. Much less is known about soft tissues. This study examined the dimensions of the implantogingival junction in relation to clinically healthy unloaded and loaded nonsubmerged implants. In total, 69 titanium plasma-sprayed (TPS) and sandblasted acid-etched (SLA) implants were placed in an alternating fashion in six foxhounds and allowed to heal for 3 months. Two dogs were sacrificed after the initial healing period. The remaining four dogs had crowns fabricated that were allowed to function for up to 12 months. These animals were sacrificed after 3 and 12 months of loading. Histometric analysis of undecalcified histologic sections included the evaluation of the sulcus depth (SD), the dimensions of the junctional epithelium (JE), and the connective tissue contact (CTC). Mean values in the 3 month unloaded group were 0.49 mm for SD, 1.16 mm for JE, and 1.36 mm for CTC. These dimensions were 0.50 mm for SD, 1.44 mm for JE, and 1.01 mm for CTC for the 3 month loaded group. After 12 months of loading, these values were 0.16 mm for SD, 1.88 mm for JE, and 1.05 mm for CTC. The sum of these measurements was similar for the different time points and similar to the same dimensions around teeth. TPS and SLA surfaces had no influence on the evaluated parameters (P > 0.05). The data suggest that a biologic width exists around unloaded and loaded nonsubmerged one-part titanium implants and that this is a physiologically formed and stable dimension as is found around teeth.
Research in implant dentistry has mainly focused on hard tissue integration with much less data available with regards to soft tissue integration involving epithelium and connective tissue. In the present study, the implantogingival junction of unloaded and loaded non-submerged titanium implants has been analyzed histometrically in the canine mandible. In 6 foxhounds, 69 implants were placed. Dogs in the unloaded group were sacrificed 3 months after implant placement. Loaded implants were restored with gold crowns and those dogs were sacrificed after 3 months and 12 months of loading. Non-decalcified histologic sections were analyzed histometrically measuring the dimensions of the Sulcus Depth (SD), the Junctional Epithelium (JE), and the Connective Tissue Contact (CTC). Histometric evaluation revealed that significant changes within tissue compartments (SD, JE, CTC) occurred over time (P < 0.05). Sulcus Depth had a mean of 0.49 mm and 0.50 mm after 3 months and 6 months of healing, but after 15 months was 0.16 mm which was significantly different. Similarly, the length of the Junctional Epithelium after 3 months and 6 months of healing was 1.16 mm and 1.44 mm, respectively, and these values were significantly different from measurements taken after 15 months (1.88 mm). The area of Connective Tissue Contact showed a different pattern of change in that after 3 months of healing (1.36 mm) it was significantly different from the same area after 6 months and 15 months which were 1.01 mm and 1.05 mm, respectively. Interestingly, the sum of SD, JE, and CTC, forming the Biologic Width, did not change over the observation period (P > 0.05). These data indicate that the Biologic Width is a physiologically formed and stable structure over time in the case of non-submerged, one-piece titanium implants as evaluated histometrically under unloaded and loaded conditions. Dynamic changes did occur, however, within the overall Biologic Width dimension. Thus, the use of non-submerged, one-piece implants allow for stable overall peri-implant soft tissues as evaluated under loaded conditions for up to 12 months.
Minimal histologic bone loss occurred when dental implants with non-matching implant-abutment diameters were placed at the bone crest and were loaded for 6 months in the canine. The bone loss was significantly less (five- to six-fold) than that reported for bone-level implants with matching implant-abutment diameters (butt-joint connections).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.