The purpose of the present study was to evaluate the influence of different surface characteristics on bone integration of titanium implants. Hollow-cylinder implants with six different surfaces were placed in the metaphyses of the tibia and femur in six miniature pigs. After 3 and 6 weeks, the implants with surrounding bone were removed and analyzed in undecalcified transverse sections. The histologic examination revealed direct bone-implant contact for all implants. However, the morphometric analyses demonstrated significant differences in the percentage of bone-implant contact, when measured in cancellous bone. Electropolished as well as the sandblasted and acid pickled (medium grit; HF/HNO3) implant surfaces had the lowest percentage of bone contact with mean values ranging between 20 and 25%. Sandblasted implants with a large grit and titanium plasma-sprayed implants demonstrated 30-40% mean bone contact. The highest extent of bone-implant interface was observed in sandblasted and acid attacked surfaces (large grit; HCl/H2SO4) with mean values of 50-60%, and hydroxylapatite (HA)-coated implants with 60-70%. However, the HA coating consistently revealed signs of resorption. It can be concluded that the extent of bone-implant interface is positively correlated with an increasing roughness of the implant surface.
Increased surface roughness of dental implants has demonstrated greater bone apposition; however, the effect of modifying surface chemistry remains unknown. In the present study, we evaluated bone apposition to a modified sandblasted/acid-etched (modSLA) titanium surface, as compared with a standard SLA surface, during early stages of bone regeneration. Experimental implants were placed in miniature pigs, creating 2 circular bone defects. Test and control implants had the same topography, but differed in surface chemistry. We created the test surface by submerging the implant in an isotonic NaCl solution following acid-etching to avoid contamination with molecules from the atmosphere. Test implants demonstrated a significantly greater mean percentage of bone-implant contact as compared with controls at 2 (49.30 vs. 29.42%; p = 0.017) and 4 wks (81.91 vs. 66.57%; p = 0.011) of healing. At 8 wks, similar results were observed. It is concluded that the modSLA surface promoted enhanced bone apposition during early stages of bone regeneration.
Many dental clinical implant studies have focused on the success of endosseous implants with a variety of surface characteristics. Most of the surface alterations have been aimed at achieving greater bone-to-implant contact as determined histometrically at the light microscopic level. A previous investigation in non-oral bone under short-term healing periods (3 and 6 weeks) indicated that a sandblasted and acid-etched titanium (SLA) implant had a greater bone-to-implant contact than did a comparably-shaped implant with a titanium plasma-sprayed (TPS) surface. In this canine mandible study, nonsubmerged implants with a SLA surface were compared to TPS-coated implants under loaded and nonloaded conditions for up to 15 months. Six foxhound dogs had 69 implants placed in an alternating pattern with six implants placed bilaterally in each dog. Gold crowns that mimicked the natural occlusion were fabricated for four dogs. Histometric analysis of bone contact with the implants was made for two dogs after 3 months of healing (unloaded group), 6 months of healing (3 months loaded), and after 15 months of healing (12 months loaded). The SLA implants had a significantly higher (p < 0.001) percentage of bone-to-implant contact than did the TPS implants after 3 months of healing (72.33 +/- 7.16 versus 52.15 +/- 9.19; mean +/- SD). After 3 months of loading (6 months of healing) no significant difference was found between the SLA and TPS surfaced implants (68.21 +/- 10.44 and 78.18 +/- 6.81, respectively). After 12 months of loading (15 months of healing) the SLA implants had a significantly greater percentage (p < 0.001) of bone-to-implant contact than did the TPS implants (71.68 +/- 6.64 and 58.88 +/- 4.62, respectively). No qualitative differences in bone tissue were observed between the two groups of implants nor was there any difference between the implants at the clinical level. These results are consistent with earlier studies on SLA implants and suggest that this surface promotes greater osseous contact at earlier time points compared to TPS-coated implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.