Olfactory receptor neurons of the nasal epithelium project via the olfactory nerve (ON) to the glomeruli of the main olfactory bulb, where they form glutamatergic synapses with the apical dendrites of mitral and tufted cells, the output cells of the olfactory bulb, and with juxtaglomerular interneurons. The glomerular layer contains one of the largest population of dopamine (DA) neurons in the brain, and DA in the olfactory bulb is found exclusively in juxtaglomerular neurons. D2 receptors, the predominant DA receptor subtype in the olfactory bulb, are found in the ON and glomerular layers, and are present on ON terminals. In the present study, field potential and single-unit recordings, as well as whole cell patch-clamp techniques, were used to investigate the role of DA and D2 receptors in glomerular synaptic processing in rat and mouse olfactory bulb slices. DA and D2 receptor agonists reduced ON-evoked synaptic responses in mitral/tufted and juxtaglomerular cells. Spontaneous and ON-evoked spiking of mitral cells was also reduced by DA and D2 agonists, and enhanced by D2 antagonists. DA did not produce measurable postsynaptic changes in juxtaglomerular cells, nor did it alter their responses to mitral/tufted cell inputs. DA also reduced 1) paired-pulse depression of ON-evoked synaptic responses in mitral/tufted and juxtaglomerular cells and 2) the amplitude and frequency of spontaneous, but not miniature, excitatory postsynaptic currents in juxtaglomerular cells. Taken together, these findings are consistent with the hypothesis that activation of D2 receptors presynaptically inhibits ON terminals. DA and D2 agonists had no effect in D2 receptor knockout mice, suggesting that D2 receptors are the only type of DA receptors that affect signal transmission from the ON to the rodent olfactory bulb.
Olfactory marker protein (OMP) is an abundant, phylogenetically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimuli, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade.
The regeneration of the olfactory neuroepithelium following olfactory bulbectomy or peripheral deafferentation was studied with mRNA probes and antibodies for B-50/GAP43 and for olfactory marker protein (OMP). Two stages in the regeneration of the olfactory epithelium could be discerned with these reagents. The first stage occurs following either peripheral deafferentation of the olfactory epithelium with Triton X-100 (TX-100) or after bulbectomy and is characterized by the formation of a large population of immature olfactory receptor neurons. These newly formed neurons express B-50/GAP43, a phosphoprotein related to neuronal growth and plasticity. During the second stage of the regeneration process the newly formed olfactory neurons mature, as evidenced by a decrease in their expression of B-50/GAP43 and an increase in the expression of OMP. This stage is only manifested if the developing neurons have access to the target olfactory bulb. Formation of a full complement of OMP-expressing neurons occurs only after peripheral lesion with TX-100. In contrast, following bulbectomy the reconstituted olfactory epithelium lacks its normal target and is compromised in its ability to recover from nerve damage, as evidenced by the presence of a large number of B-50/GAP43-expressing neurons up to 3 months after the lesion and its failure to establish a full complement of OMP-expressing neurons. These results demonstrate that the olfactory epithelium is capable of replacing its sensory neurons independently of the presence of its target, the olfactory bulb. However, the differential patterns of expression of B-50/GAP43 and OMP at long times after peripheral lesion with TX-100 or bulbectomy illustrate the profound effect the olfactory bulb has on neuronal maturation in reconstituted olfactory neuroepithelium.
Venezuelan equine encephalitis virus (VEE) causes a biphasic disease in mice following subcutaneous inoculation in the footpad. In the initial phase, virus replicates primarily in the lymphoid tissues and induces a high titer viremia. Subsequently, the virus invades the central nervous system (CNS) from the circulation, and an encephalitis ensues. At the earliest times that VEE specific in situ hybridization signal was observed in the CNS, it was in areas of the brain involved in olfaction, leading to the hypothesis that virus may invade the brain from the circulation through the olfactory system. The results presented in this paper define the route of CNS invasion in experimental murine VEE disease initiated by subcutaneous inoculation. Virus circulating in the blood appears to seed specific areas of the peripheral nervous system during the viremic lymphoid phase of the illness. Virus replication within olfactory and dental tissues is followed by centripetal spread of virus along neural pathways. Virus enters the brain in a pattern reflecting the proximity of the peripheral invasion site to the CNS. Specifically, virus is first found in the brain within the structures of the olfactory system, followed by areas innervated by the trigeminal nerve. Virus later disseminates along fiber tracts and connected circuits within the brain, resulting in a disseminated meningoencephalitis. Surgical or chemical interruption of the olfactory system at the level of the olfactory neuroepithelium or the main olfactory bulb inhibited entry of VEE into the CNS through the olfactory nerve. However, the olfactory route is not absolutely required for CNS invasion, as virus invaded the CNS of olfactory ablated animals through the trigeminal nerve. These observations are consistent with a model of hematogenous seeding of the peripheral nervous system, followed by invasion of the CNS by direct neural spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.