This paper focuses on a concept that shows a way to automatically create a point-based tolerance analysis model out of existing development data. Nowadays solutions for an automated tolerance simulation model creation are using a static approach for the model build-up. For this purpose product-/ production-development data are automatically mapped on preexisting models (e.g. skeleton models). If chances during development process occur, the tolerance simulation models have to be reworked. Today only simple changes in the model can be automated (e.g. change of distribution, tolerance range etc.). A complete new tolerance simulation model build-up process for dynamically changing product-/ production-development information is not possible. To give an application example, tolerance simulation models for sheet metal parts in automotive industry are based on different development data. Before the first simulation model is created (to secure the tolerance concepts etc.), all necessary information have already been developed, e.g. in the automotive industry's development process: part geometry, tolerance information, assembly graph, jig and fixture concept, joining location and measurement points. Thus the automated simulation generation should be possible. First step is to describe an interface for a dynamic model creation in tolerance simulation systems. In a second step preprocessing of development data is necessary to map them into tolerance simulation software restrictions. This delivers a solution to fill the gap between the PDM-/ CAD and the CAT-system. The considered approach for automated tolerance simulation model creation provides the opportunity to build-up the tolerance analysis models highly efficient and almost automatically. Tolerance analysis can then be used to rapidly calculate several options. This offers the possibility to increase the product maturity level at a very early stage of the development process.
Computer aided tolerancing (CAT) in the automobile industry is implemented by CAD tools. These tools analyze the manufacturability of complex assemblies with rigid single parts in an early stage to reduce the product development time and the cost for hardware prototypes. This paper proposes an approach to implement tolerance simulation for a compliant assembly, which includes manufacturing processes such as clinching, bolting and hemming by applying tolerance simulation tool. The fender- BIW system is simulated as a compliant–rigid system and the simulation model is applied to two production scenarios. The simulation results are compared with real measurement data, which demonstrates the efficacy of using simulation in early production as opposed to prototyping or other methods of design by showing the strong correlation between simulation results and as-built products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.