Ordinal consensus ranking problems have received much attention in the management science literature. A problem arises in situations where a group of k decision makers (DMs) is asked to rank order n alternatives. The question is how to combine the DM rankings into one consensus ranking. Several different approaches have been suggested to aggregate DM responses into a compromise or consensus ranking; however, the similarity of consensus rankings generated by the different algorithms is largely unknown. In this paper, we propose a new hybrid distance-based ideal-seeking consensus ranking model (DCM). The proposed hybrid model combines parts of the two commonly used consensus ranking techniques of Beck and Lin (1983) and Cook and Kress (1985) into an intuitive and computationally simple model. We illustrate our method and then run a Monte Carlo simulation across a range of k and n to compare the similarity of the consensus rankings generated by our method with the best-known method of Borda and Kendall (Kendall 1962) and the two methods proposed by Beck and Lin (1983) and Cook and Kress (1985). DCM and Beck and Lin's method yielded the most similar consensus rankings, whereas the Cook-Kress method and the Borda-Kendall method yielded the least similar consensus rankings.
The problem of aggregating individual rankings to create an overall consensus ranking representative of the group is of longstanding interest in group decision making. The problem arises in situations where a group of k Decision Makers (DMs) are asked to rank order n alternatives. The question is how to combine the DMs' rankings into one consensus ranking. Several different approaches have been suggested to aggregate DM responses into a compromise or consensus ranking, however, none is generally recognised as being the best and the similarity of consensus rankings generated by these algorithms is largely unknown. In this paper, we propose a new Weighted-sum ordinal Consensus ranking Method (WCM) with the weights derived from a Sigmoid function. We run Monte Carlo simulation across a range of k and n to compare the similarity of the consensus rankings generated by our method with the best-known method of Borda-Kendall (BAK; Kendall, M. (1962) Rank correlation methods. New York, NY: Hafner) and two other commonly used techniques proposed by Beck, M.P. and Lin, B.W. (1983) 'Some heuristics for the consensus ranking problem',
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.