This paper studies Markov decision processes (MDPs) from the categorical perspective of coalgebra and algebra. Probabilistic systems, similar to MDPs but without rewards, have been extensively studied, also coalgebraically, from the perspective of program semantics. In this paper, we focus on the role of MDPs as models in optimal planning, where the reward structure is central. The main contributions of this paper are (i) to give a coinductive explanation of policy improvement using a new proof principle, based on Banach's Fixpoint Theorem, that we call contraction coinduction, and (ii) to show that the long-term value function of a policy with respect to discounted sums can be obtained via a generalized notion of corecursive algebra, which is designed to take boundedness into account. We also explore boundedness features of the Kantorovich lifting of the distribution monad to metric spaces.
We present a proof of Arrow's theorem from social choice theory that uses a fixpoint argument. Specifically, we use Banach's result on the existence of a fixpoint of a contractive map defined on a complete metric space. Conceptually, our approach shows that dictatorships can be seen as "stable points" (fixpoints) of a certain process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.