The very low density lipoprotein/apolipoprotein-E receptor (VLDLR) is the newest member of the low density lipoprotein receptor (LDLR) family. Very little is known about VLDLR localization and regulation. Immunohistochemical analysis of human placenta with a specific polyclonal antibody detected VLDLR in syncytiotrophoblast and intermediate trophoblast cells. VLDLR transcripts were also localized in these cells by in situ hybridization histochemistry. In addition, VLDLR messenger RNA (mRNA) was detected in villous core endothelial cells and cells appearing to be Hofbauer cells. Northern blot analysis of placenta revealed a 2.6-fold increase in VLDLR mRNA at term compared to that in the first trimester. The regulation of VLDLR expression was studied in JEG-3 and BeWo choriocarcinoma cells, two trophoblast-derived cell lines. Treatment of these cells with 8-bromo-cAMP caused a profound suppression of VLDLR message, whereas LDLR transcripts were increased. Incubation of JEG-3 cells with 25-hydroxycholesterol did not lead to sterol negative feedback on VLDLR gene expression, unlike LDLR mRNA, which declined markedly. Insulin (200 mg/L) up-regulated VLDLR message in JEG-3 cells 2-fold, as did the fibrate hypolipidemic drug, clofibric acid. We conclude that 1) VLDLR is expressed in human placental trophoblast cells in a pattern consistent with a role in placental lipid transport; 2) VLDLR expression is high at term relative to that in the first trimester; and 3) the trophoblast VLDLR is subject to down-regulation by cAMP and up-regulation by insulin and fibrate hypolipidemic drugs.
The very low density lipoprotein/apolipoprotein-E receptor (VLDLR) is the newest member of the low density lipoprotein receptor (LDLR) family. Very little is known about VLDLR localization and regulation. Immunohistochemical analysis of human placenta with a specific polyclonal antibody detected VLDLR in syncytiotrophoblast and intermediate trophoblast cells. VLDLR transcripts were also localized in these cells by in situ hybridization histochemistry. In addition, VLDLR messenger RNA (mRNA) was detected in villous core endothelial cells and cells appearing to be Hofbauer cells. Northern blot analysis of placenta revealed a 2.6-fold increase in VLDLR mRNA at term compared to that in the first trimester. The regulation of VLDLR expression was studied in JEG-3 and BeWo choriocarcinoma cells, two trophoblast-derived cell lines. Treatment of these cells with 8-bromo-cAMP caused a profound suppression of VLDLR message, whereas LDLR transcripts were increased. Incubation of JEG-3 cells with 25-hydroxycholesterol did not lead to sterol negative feedback on VLDLR gene expression, unlike LDLR mRNA, which declined markedly. Insulin (200 mg/L) up-regulated VLDLR message in JEG-3 cells 2-fold, as did the fibrate hypolipidemic drug, clofibric acid. We conclude that 1) VLDLR is expressed in human placental trophoblast cells in a pattern consistent with a role in placental lipid transport; 2) VLDLR expression is high at term relative to that in the first trimester; and 3) the trophoblast VLDLR is subject to down-regulation by cAMP and up-regulation by insulin and fibrate hypolipidemic drugs.
We report the cloning of a complementary DNA for the mouse homolog of the very low density lipoprotein (VLDL)/apolipoprotein-E receptor (VLDLR), the deduced amino acid sequence of the protein, and the mapping of the gene encoding the receptor to mouse chromosome 19. Northern hybridization revealed that the VLDLR messenger RNA (mRNA) is most abundant in skeletal muscle, heart, kidney, and brain. It was also detected in lung and in low levels in liver, but it was not found in spleen or testes. Levels of VLDLR mRNA in mouse placenta increased from days 8-18 of gestation. The VLDLR mRNA was induced in 3T3-L1 cells undergoing differentiation into adipocytes. The increase in VLDLR mRNA paralleled the rise in lipoprotein lipase and hormone-sensitive lipase mRNAs. However, VLDLR and low density lipoprotein receptor-related protein were increased in the presence of retinoic acid, whereas the induction of lipoprotein lipase and hormone-sensitive lipase mRNAs was inhibited. Our observations demonstrate regulated expression of the VLDLR gene in placenta and adipocytes, where the receptor protein may play roles in the uptake of triglyceride-rich particles for storage of lipid (adipocytes) or for lipid transport to the fetus (placenta). The availability of a murine complementary DNA probe and the knowledge of the map position of the VLDLR gene in the mouse genome will facilitate studies on the function and regulation of this protein.
To examine the mechanism of estrogen's direct stimulation of steroidogenesis in the rabbit corpus luteum, we tested the hypothesis that the effect of estrogen on progestin production occurs at the site of processing of the precursor for pregnenolone (i.e. cholesterol) in the mitochondrion. For this purpose, we manipulated a model of estrogen stimulation by 1) removing sc estradiol-filled polydimethylsiloxane capsules from superovulated rabbits on day 9 of pseudopregnancy or 2) leaving the capsules in place to preserve a chronic estrogen stimulus. In the estrogen-deprived rabbits, the serum progesterone level fell precipitously in vivo within 24 h, but in rabbits with chronic estrogen stimulation, serum progesterone levels remained high. Our results show that the loss in progestin production caused by estrogen deprivation could not be attributed to loss of the mitochondrial cytochrome P-450 side-chain cleavage enzyme (P-450scc), a common rate-limiting step in progestin synthesis in many steroidogenic tissues. In addition, we confirmed that there was no loss in the catalytic activity of this enzyme. Treatment with aminoglutethimide in vivo followed by electron paramagnetic resonance spectroscopic analysis of mitochondria (prepared in aminoglutethimide-free buffers) showed that incubation of isolated mitochondria at 37 C and pH 6.2 caused an increased high spin state (g = 8.2 signal) and a concomitant decreased low spin state. This shift from low to high spin states, which is indicative of cholesterol-P-450scc complex formation, occurred in the luteal mitochondria from both estrogen-deprived and estrogen-stimulated rabbits. In further studies to localize estrogen's regulatory point, we determined that the initial (first minute) rate of production of pregnenolone (per mg protein or per U P-450scc) from endogenous precursor proceeded equally fast in mitochondria from estrogen-deprived and those from estrogen-stimulated rabbits. However, the rapid pregnenolone production in the estrogen-deprived group lasted for a shorter time and, after 30 min, yielded less pregnenolone per mg protein or per U P-450scc than did mitochondria from estrogen-stimulated rabbits. Addition of 25-hydroxycholesterol did not increase the initial rate of pregnenolone formation, indicating that precursor availability is not limiting during the initial period. In aggregate, these observations suggest that the effect of estrogen on progestin production in the rabbit corpus luteum is not regulation of the movement of cholesterol to the catalytic site on the inner mitochondrial membrane, even though this is a step in the regulation of protein hormone-stimulated steroidogenesis.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.