Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat 1 (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat [2][3][4] . The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence 5 .Here we use an array of advanced technologies, including orderedclone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a referencequality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes.
Background: Microsatellite (simple sequence repeat -SSR) and single nucleotide polymorphism (SNP) markers are two types of important genetic markers useful in genetic mapping and genotyping. Often, large-scale genomic research projects require high-throughput computer-assisted primer design. Numerous such web-based or standard-alone programs for PCR primer design are available but vary in quality and functionality. In particular, most programs lack batch primer design capability. Such a high-throughput software tool for designing SSR flanking primers and SNP genotyping primers is increasingly demanded.
SummaryHexaploid wheat (Triticum aestivum, genomes AABBDD) originated by hybridization of tetraploid Triticum turgidum (genomes AABB) with Aegilops tauschii (genomes DD). Genetic relationships between A. tauschii and the wheat D genome are of central importance for the understanding of wheat origin and subsequent evolution.Genetic relationships among 477 A. tauschii and wheat accessions were studied with the A. tauschii 10K Infinium single nucleotide polymorphism (SNP) array.Aegilops tauschii consists of two lineages (designated 1 and 2) having little genetic contact. Each lineage consists of two closely related sublineages. A population within lineage 2 in the southwestern and southern Caspian appears to be the main source of the wheat D genome. Lineage 1 contributed as little as 0.8% of the wheat D genome. Triticum aestivum is subdivided into the western and Far Eastern populations. The Far Eastern population conserved the genetic make-up of the nascent T. aestivum more than the western population. In wheat, diversity is high in chromosomes 1D and 2D and it correlates in all wheat D-genome and A. tauschii chromosomes with recombination rates.Gene flow from A. tauschii was an important source of wheat genetic diversity and shaped its distribution along the D-genome chromosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.