Recent studies suggest that thousands of genes may contribute to breast cancer pathophysiologies when deregulated by genomic or epigenomic events. Here, we describe a model "system" to appraise the functional contributions of these genes to breast cancer subsets. In general, the recurrent genomic and transcriptional characteristics of 51 breast cancer cell lines mirror those of 145 primary breast tumors, although some significant differences are documented. The cell lines that comprise the system also exhibit the substantial genomic, transcriptional, and biological heterogeneity found in primary tumors. We show, using Trastuzumab (Herceptin) monotherapy as an example, that the system can be used to identify molecular features that predict or indicate response to targeted therapies or other physiological perturbations.
Mutations in the adenomatous polyposis coli (APC) tumour-suppressor gene occur in most human colon cancers. Loss of functional APC protein results in the accumulation of beta-catenin. Mutant forms of beta-catenin have been discovered in colon cancers that retain wild-type APC genes, and also in melanomas, medulloblastomas, prostate cancer and gastric and hepatocellular carcinomas. The accumulation of beta-catenin activates genes that are responsive to transcription factors of the TCF/LEF family, with which beta-catenin interacts. Here we show that beta-catenin activates transcription from the cyclin D1 promoter, and that sequences within the promoter that are related to consensus TCF/LEF-binding sites are necessary for activation. The oncoprotein p21ras further activates transcription of the cyclin D1 gene, through sites within the promoter that bind the transcriptional regulators Ets or CREB. Cells expressing mutant beta-catenin produce high levels of cyclin D1 messenger RNA and protein constitutively. Furthermore, expression of a dominant-negative form of TCF in colon-cancer cells strongly inhibits expression of cyclin D1 without affecting expression of cyclin D2, cyclin E, or cyclin-dependent kinases 2, 4 or 6. This dominant-negative TCF causes cells to arrest in the G1 phase of the cell cycle; this phenotype can be rescued by expression of cyclin D1 under the cytomegalovirus promoter. Abnormal levels of beta-catenin may therefore contribute to neoplastic transformation by causing accumulation of cyclin D1.
GTPases are conserved molecular switches, built according to a common structural design. Rapidly accruing knowledge of individual GTPases--crystal structures, biochemical properties, or results of molecular genetic experiments--support and generate hypotheses relating structure to function in other members of the diverse family of GTPases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.