This paper explores a statistical basis for a process often described in computer vision: image segmentation by region merging following a particular order in the choice of regions. We exhibit a particular blend of algorithmics and statistics whose segmentation error is, as we show, limited from both the qualitative and quantitative standpoints. This approach can be efficiently approximated in linear time/space, leading to a fast segmentation algorithm tailored to processing images described using most common numerical pixel attribute spaces. The conceptual simplicity of the approach makes it simple to modify and cope with hard noise corruption, handle occlusion, authorize the control of the segmentation scale, and process unconventional data such as spherical images. Experiments on gray-level and color images, obtained with a short readily available C-code, display the quality of the segmentations obtained.
Abstract-We study the centroid with respect to the class of information-theoretic Burbea-Rao divergences that generalize the celebrated Jensen-Shannon divergence by measuring the nonnegative Jensen difference induced by a strictly convex and differentiable function. Although those Burbea-Rao divergences are symmetric by construction, they are not metric since they fail to satisfy the triangle inequality. We first explain how a particular symmetrization of Bregman divergences called JensenBregman distances yields exactly those Burbea-Rao divergences. We then proceed by defining skew Burbea-Rao divergences, and show that skew Burbea-Rao divergences amount in limit cases to compute Bregman divergences. We then prove that Burbea-Rao centroids are unique, and can be arbitrarily finely approximated by a generic iterative concave-convex optimization algorithm with guaranteed convergence property. In the second part of the paper, we consider the Bhattacharyya distance that is commonly used to measure overlapping degree of probability distributions. We show that Bhattacharyya distances on members of the same statistical exponential family amount to calculate a Burbea-Rao divergence in disguise. Thus we get an efficient algorithm for computing the Bhattacharyya centroid of a set of parametric distributions belonging to the same exponential families, improving over former specialized methods found in the literature that were limited to univariate or "diagonal" multivariate Gaussians. To illustrate the performance of our Bhattacharyya/Burbea-Rao centroid algorithm, we present experimental performance results for k-means and hierarchical clustering methods of Gaussian mixture models.
Abstract-We generalize the notions of centroids (and barycenters) to the broad class of information-theoretic distortion measures called Bregman divergences. Bregman divergences form a rich and versatile family of distances that unifies quadratic Euclidean distances with various well-known statistical entropic measures. Since besides the squared Euclidean distance, Bregman divergences are asymmetric, we consider the left-sided and rightsided centroids and the symmetrized centroids as minimizers of average Bregman distortions. We prove that all three centroids are unique and give closed-form solutions for the sided centroids that are generalized means. Furthermore, we design a provably fast and efficient arbitrary close approximation algorithm for the symmetrized centroid based on its exact geometric characterization. The geometric approximation algorithm requires only to walk on a geodesic linking the two left/right sided centroids. We report on our implementation for computing entropic centers of image histogram clusters and entropic centers of multivariate normal distributions that are useful operations for processing multimedia information and retrieval. These experiments illustrate that our generic methods compare favorably with former limited ad-hoc methods.Index Terms-Centroid, Kullback-Leibler divergence, Bregman divergence, Bregman power divergence, Burbea-Rao divergence, Csiszár divergence, Legendre duality, Information geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.