A new class of potent PI3Kα inhibitors is identified based on aryl substituted morpholino-triazine scaffold. The identified compounds showed not only a high level of enzymatic and cellular potency in nanomolar range but also high oral bioavailability. The three lead molecules (based on their in vitro potency) when evaluated further for in vitro metabolic stability as well as pharmacokinetic profile led to the identification of 26, as a candidate for further development. The IC50 and EC50 value of 26 is 60 and 500 nM, respectively, for PI3Kα enzyme inhibitory activity and ovarian cancer (A2780) cell line. The identified lead also showed a high level of microsomal stability and minimal inhibition activity for CYP3A4, CYP2C19, and CYP2D6 at 10 μM concentrations. The lead compound 26, demonstrated excellent oral bioavailability with an AUC of 5.2 μM at a dose of 3 mpk in mice and found to be well tolerated in mice when dosed at 30 mpk BID for 5 days.
The 10-bromobenzocycloheptapyridyl farnesyl transferase inhibitor (FTI) Sch-66336 (1) is currently under clinical evaluation for the treatment of human cancers. During structure-activity relationship development leading to 1, 10-bromobenzocycloheptapyridyl FTIs were found to be more potent than analogous compounds lacking the 10-Br substituent. This potency enhancement was believed to be due, in part, to an increase in conformational rigidity as the 10-bromo substituent could restrict the conformation of the appended C(11) piperidyl substituent in an axial orientation. A novel and potent class of FTIs, represented by indolocycloheptapyridine Sch-207758 [(+)-10a], have been designed based on this principle. Although structural and thermodynamic results suggest that entropy plays a crucial role in the increased potency observed with (+)-10a through conformational constraints and solvation effects, the results also indicate that the indolocycloheptapyridine moiety in (+)-10a provides increased hydrophobic interactions with the protein through the addition of the indole group. This report details the X-ray structure and the thermodynamic and pharmacokinetic profiles of (+)-10a, as well as the synthesis of indolocycloheptapyridine FTIs and their potencies in biochemical and biological assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.