During the last two decades, extensive research has explored the catalytic effects of different organic molecules with redox mediating properties on the anaerobic (bio)transformation of a wide variety of organic and inorganic compounds. The accumulated evidence points at a major role of electron shuttles in the redox conversion of several distinct contaminants, both by chemical and biological mechanisms. Many microorganisms are capable of reducing redox mediators linked to the anaerobic oxidation of organic and inorganic substrates. Electron shuttles can also be chemically reduced by electron donors commonly found in anaerobic environments (e.g. sulfide and ferrous iron). Reduced electron shuttles can transfer electrons to several distinct electron-withdrawing compounds, such as azo dyes, polyhalogenated compounds, nitroaromatics and oxidized metalloids, among others. Moreover, reduced molecules with redox properties can support the microbial reduction of electron acceptors, such as nitrate, arsenate and perchlorate. The aim of this review paper is to summarize the results of reductive (bio)transformation processes catalyzed by electron shuttles and to indicate which aspects should be further investigated to enhance the applicability of redox mediators on the (bio)transformation of contaminants.
Activated carbon (AC) has a long history of applications in environmental technology as an adsorbent of pollutants for the purification of drinking waters and wastewaters. Here we describe novel role of AC as redox mediator in accelerating the reductive transformation of pollutants as well as a terminal electron acceptor in the biological oxidation of an organic substrate. This study explores the use of AC as an immobilized redox mediator for the reduction of a recalcitrant azo dye (hydrolyzed Reactive Red 2) in laboratory-scale anaerobic bioreactors, using volatile fatty acids as electron donor. The incorporation of AC in the sludge bed greatly improved dye removal and formation of aniline, a dye reduction product. These results indicate that AC acts as a redox mediator. In supporting batch experiments, bacteria were shown to oxidize acetate at the expense of reducing AC. Furthermore, AC greatly accelerated the chemical reduction of an azo dye by sulfide. The results taken as a whole clearly suggest that AC accepts electrons from the microbial oxidation of organic acids and transfers the electrons to azo dyes, accelerating their reduction. A possible role of quinone surface groups in the catalysis is discussed.
In the last 40 years, anaerobic sludge bed reactor technology evolved from localized lab-scale trials to worldwide successful implementations at a variety of industries. High-rate sludge bed reactors are characterized by a very small foot print and high applicable volumetric loading rates. Best performances are obtained when the sludge bed consists of highly active and well settleable granular sludge. Sludge granulation provides a rich microbial diversity, high biomass concentration, high solids retention time, good settling characteristics, reduction in both the operation costs and reactor volume, and high tolerance to inhibitors and temperature changes. However, sludge granulation cannot be guaranteed on every type of industrial wastewater. Especially in the last two decades, various types of high-rate anaerobic reactor configurations have been developed that are less dependent on the presence of granular sludge, and many of them are currently successfully applied for the treatment of various kinds of industrial wastewaters worldwide. This study discusses the evolution of anaerobic sludge bed technology for the treatment of industrial wastewaters in the last four decades, focusing on granular sludge bed systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.