Supernumerary B chromosomes are optional additions to the basic set of A chromosomes, and occur in all eukaryotic groups. They differ from the basic complement in morphology, pairing behavior, and inheritance and are not required for normal growth and development. The current view is that B chromosomes are parasitic elements comparable to selfish DNA, like transposons. In contrast to transposons, they are autonomously inherited independent of the host genome and have their own mechanisms of mitotic or meiotic drive. Although B chromosomes were first described a century ago, little is known about their origin and molecular makeup. The widely accepted view is that they are derived from fragments of A chromosomes and/or generated in response to interspecific hybridization. Through next-generation sequencing of sorted A and B chromosomes, we show that B chromosomes of rye are rich in genederived sequences, allowing us to trace their origin to fragments of A chromosomes, with the largest parts corresponding to rye chromosomes 3R and 7R. Compared with A chromosomes, B chromosomes were also found to accumulate large amounts of specific repeats and insertions of organellar DNA. The origin of rye B chromosomes occurred an estimated ∼1.1-1.3 Mya, overlapping in time with the onset of the genus Secale (1.7 Mya). We propose a comprehensive model of B chromosome evolution, including its origin by recombination of several A chromosomes followed by capturing of additional A-derived and organellar sequences and amplification of Bspecific repeats.centromere | genome evolution | promiscuous DNA | non-Mendelian chromosome transmission S upernumerary B chromosomes are not required for the normal growth and development of organisms and are assumed to represent a specific type of selfish genetic element. B chromosomes do not pair with any of the standard A chromosomes at meiosis, and have irregular modes of inheritance. Because they are dispensable for normal growth, B chromosomes have been considered nonfunctional, with no essential genes. As a result, B chromosomes follow their own species-specific evolutionary pathways. Despite their widespread occurrence in all eukaryotic groups, including insects (1), mammals (2), and plants (3), and their potential as chromosome-based vectors in biotechnology (4), little is known about the origin and molecular composition of these constituents of the genome.Several scenarios have been proposed for the origin of B chromosomes. The most widely accepted view is that they are derived from the A chromosome complement. Some evidence also suggests that B chromosomes can be spontaneously generated in response to the new genomic conditions after interspecific hybridization. The involvement of sex chromosomes has also been argued for their origin in some species (reviewed in refs. 5-7). Despite the high number of species with B chromosomes, their de novo formation is probably a rare event; the occurrence of similar B chromosome variants within related species suggests that they arose from a single origin...
To analyze reasons for inconclusive results of earlier chloroplast phylogenies in the grass genus Hordeum, we established a genealogy of chloroplast haplotypes by sequencing the trnL-trnF region in 875 individuals, covering all 31 species of the genus. Although the outcomes of phenetic and parsimony analyses of 88 haplotypes were ambiguous, a network approach showed that in Hordeum ancient chloroplast types co-occur with their descendants. Moreover, we found up to 18 different chloroplast haplotypes within a single species and up to 6 species sharing single haplotypes. Persisting polymorphisms together with incomplete lineage sorting occurred preferentially in the rapidly speciating New World taxa of the genus, where ancient chloroplast types have survived for at least 4 Myr. Lineages-through-time plots and a high number of missing chloroplast haplotypes indicated far-reaching extinction of chloroplast lineages in Europe and particularly the Mediterranean. Survival of these lineages in East Asia and North America resulted in chloroplast relationships that markedly differed from nuclear estimations of species relationships. Thus, even for the deepest splits in the genus, reaching back more than 9 Myr, no safe phylogenetic inference from chloroplast data is possible in Hordeum. The chloroplast genealogy, however, revealed biogeographic patterns and indicated processes involved in speciation in Hordeum. We conclude that the described phenomena are not restricted to Hordeum and that the knowledge of the chloroplast relationships within a genus is indispensable to prevent misinterpretation of phylogeographic data within single species.
Polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) and sequence analysis of noncoding regions of chloroplast DNA were used to investigate 37 populations of Eritrichium nanum covering its total distribution area, the European Alps. There was no haplotypic variation within the populations, and most haplotypes were restricted to single sites or to neighbouring populations, suggesting low levels of long distance gene flow via seeds. The present geographical distribution of haplotypes probably reflects an ancient geographical pattern within two regions in the intensely glaciated western and eastern central Alps identified as genetic hotspot areas. These two regions contained seven of the total of 11 haplotypes, including many of the most derived ones. The divergent haplotypes formed closely related groups, which supported a separate evolution of these haplotypes in these two regions and, more importantly, gave strong evidence for the in situ survival of these populations on nunataks within the western and eastern central Alps during Pleistocene glaciation. This result is in concordance with a previous study on E. nanum using nuclear markers. Only one haplotype was common and widespread throughout the distributional range of E. nanum. At the same time, it was the evolutionarily basal-most and all other haplotypes were best described as its descendants. This haplotype is hypothesized to be genetically identical to a Tertiary Alpine colonizing ancestor, whose distribution was secondarily fragmented and infiltrated by derived haplotypes originating through local mutations.
Aurora-like kinases play key roles in chromosome segregation and cytokinesis in yeast, plant, and animal systems. Here, we characterize three Arabidopsis thaliana protein kinases, designated AtAurora1, AtAurora2, and AtAurora3, which share high amino acid identities with the Ser/Thr kinase domain of yeast Ipl1 and animal Auroras. Structure and expression of AtAurora1 and AtAurora2 suggest that these genes arose by a recent gene duplication, whereas the diversification of plant α and β Aurora kinases predates the origin of land plants. The transcripts and proteins of all three kinases are most abundant in tissues containing dividing cells. Intracellular localization of green fluorescent protein–tagged AtAuroras revealed an AtAurora-type specific association mainly with dynamic mitotic structures, such as microtubule spindles and centromeres, and with the emerging cell plate of dividing tobacco (Nicotiana tabacum) BY-2 cells. Immunolabeling using AtAurora antibodies yielded specific signals at the centromeres that are coincident with histone H3 that is phosphorylated at Ser position10 during mitosis. An in vitro kinase assay demonstrated that AtAurora1 preferentially phosphorylates histone H3 at Ser 10 but not at Ser 28 or Thr 3, 11, and 32. The phylogenetic analysis of available Aurora sequences from different eukaryotic origins suggests that, although a plant Aurora gene has been duplicated early in the evolution of plants, the paralogs nevertheless maintained a role in cell cycle–related signal transduction pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.