Experimental tests of an axisymmetric jet of air impinging on both water and wet cement were performed and analyzed. Since the cavities formed on the water were unsteady and irregular, cavities were formed on wet fast-setting cement and allowed to set with the jet impinging. In this way, detailed measurements of the solidified cavity shape were made and shown to agree well with theory. This correlation of the data with the theory indicates that little gas was entrained in the liquid and that the influence of liquid viscosity and surface tension was small for the experimental conditions tested. A simplified analysis is also presented for an incompressible axisymmetric gas jet impinging normally on a liquid surface. The analysis was effected by combining the following physical conditions and assumptions: (i) the stagnation pressure corresponding to the centreline conditions of the jet at the bottom of the cavity is equal to the hydrostatic pressure, wherein an empirical turbulent jet decay law is used to predict the variation of stagnation pressure with distance from the nozzle; (ii) the force on the liquid is equal to the total change in normal momentum, which is equal to the weight of the displaced liquid; (iii) the shape of the cavity is a paraboloid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.