Minute virus of canines (MVC), also known as canine parvovirus type 1, was initially believed to be a nonpathogenic agent, since it was first isolated from canine fecal specimens in the late 1960s. However, subsequent pathological as well as epidemiological studies suggested that MVC is a pathogen of neonatal puppies and is widely distributed among domestic dogs in the United States. The virus also has been shown to cause fetal deaths. Nevertheless, the virus was not detected in dogs outside the United States until recently, presumably because of a lack of widespread availability of the only susceptible canine cell line, WRCC/3873D, used for MVC isolation. We examined 470 clinical specimens from 346 dogs by PCR and detected MVC-specific gene fragments from four diseased puppies (positive rate, 1.2%). Viruses were recovered from three PCRpositive rectal specimens by using WRCC/3873D and MDCK cells. The isolates possessed antigenic and genomic properties similar to those of the U.S. reference strain GA3 and were identified as MVC. In addition, seroepidemiological evidence that 5.0% of dogs possessed anti-MVC antibodies also indicated the presence of MVC infection among dogs in Japan. From this study and several recent European reports describing MVC field cases, it is evident that MVC is distributed among domestic dogs worldwide.
Porcine proliferative ileitis is a major economic burden for the swine industry, affecting growing pigs and young adult pigs. In this study, the protective efficacy of an inactivated, injectable whole-cell bacteria vaccine against L. intracellularis – Porcilis® Ileitis was evaluated under field conditions.Eighty-five, three-week-old pigs on a commercial farrow-to-finish farm were vaccinated by the intramuscular route, either with a dose of injectable vaccine, or with saline. A subset of vaccinates and control pigs were necropsied at 21 days post-challenge. Incidence and severity of ileitis were evaluated by gross and microscopic observation of ileal tissues. Colonization of the gut after challenge was examined by L. intracellularis-specific immunohistochemistry, and qPCR of ileal scrapings. Integrity of the intestinal barrier was evaluated to quantify a range of intestinal markers including secreted mucin and intestinal alkaline phosphatase, and innate immune markers including Caspase-3 and Calprotectin. A second subset of pigs was monitored for fecal shedding of L. intracellularis, until resolution of shedding.Our investigation indicated that Porcilis Ileitis provided robust protection against ileitis, reduced bacterial shedding 15-fold (p < .05) and preserved normal gut barrier function in the face of an experimental challenge with virulent L. intracellularis.
In recent years a wealth of data has become available about the caliciviruses that infect humans, as well as those which infect a range of animal species, notably cats, rabbits, pigs and marine animals. However, in the two decades since the earliest reports of calicivirus infection in dogs, very little has become known about the epidemiology, pathogenicity and molecular biology of the caliciviruses that may infect canines. In 1990, a canine calicivirus (CaCV) was isolated from a 2-month-old diarrhoeic domestic dog in Japan. This virus, which can be grown in cultured cells of canine origin, has the classic ' Star of David ' morphology of caliciviruses, and the one major structural protein was shown to be immunogenic in dogs. In this study, a 3n8 kb region of the genome of this CaCV isolate from the RNA polymerase gene to the 3h poly(A) tail was cloned and sequenced, and phylogenetic analysis was undertaken in order to establish the relationship of CaCV to other animal and human caliciviruses. This CaCV isolate had a nucleotide sequence, genomic organization and phylogenetic position closest to, but clearly distinct from, both feline calicivirus and San Miguel sea lion virus isolates. These findings suggest that CaCV represents a new clade of animal caliciviruses, presumably as a member of the recently proposed new genus Vesivirus.
The ORF2 product of canine calicivirus (CaCV) was identified and its processing in mammalian cells was analysed. Immunoblot analysis revealed the presence of the 75 kDa capsid precursor in addition to a 57 kDa capsid protein and a 22 kDa N-terminal polypeptide in CaCV-infected cells treated at an elevated temperature. When the CaCV ORF2 was expressed in a transient mammalian expression system, only the 75 kDa precursor was detected in immunoblot analysis, suggesting that no posttranslational processing occurred in this system. However, the precursor was processed to a 57 kDa protein and a 22 kDa polypeptide by the proteinase of feline calicivirus (FCV) when this was coexpressed with ORF2. Processing was blocked by site-directed mutagenesis of the putative cleavage site in the capsid precursor. The results indicate that the proteinase of FCV can cleave the capsid precursor of CaCV to produce the mature capsid protein and that CaCV may have a similar proteinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.