In man, manganese neurointoxication is characterised in the early phase by behavior reminiscent of that observed in schizophrenia. During chronic manganese intoxication the neuropsychiatric symptoms manifested earlier disappear and are followed by a permanent neurological phase typified by extrapyramidal symptoms similar to those of Parkinson's disease. Study of manganese intoxication in animals may provide important clues towards elucidation of the biochemical defect underlying neuropsychiatric as well as extrapyramidal disease. Investigations in our laboratory suggest that neurotoxicity of manganese is an exaggeration of function in normal neuronal homeostasis. Manganese neurointoxication in neonatal rats resulted in significant depression of lipid peroxidation in several rat brain regions examined. In the striatum, lipid peroxidative activity was abolished, an effect which may be related to alteration in neurotransmitters often observed in the striatum of manganese treated rats. The chronic, extrapyramidal stage of manganism, may ensue when excess Mn2+ is oxidised to higher valency forms where it can potentiate the autoxidation of catecholamines, like dopamine, resulting in concomitant formation of free radicals and cytotoxic quinones. This latter effect may arise preferentially in the substantia nigra, where neuromelanin is formed nonenzymatically by autoxidation of dopamine.
Inhibition of human platelet aggregation by N,N-diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine-HCl (DPPE), a novel antagonist of histamine binding, suggested that histamine might serve a critical role in cell function. Phorbol-12-myristate-13-acetate (PMA) or collagen was found to increase platelet histamine content in parallel with promotion of aggregation. Inhibitors of histidine decarboxylase (HDC) suppressed both aggregation and the elevation of histamine content, whereas DPPE inhibited aggregation only. In saponin-permeabilized platelets, added histamine reversed the inhibition by DPPE or HDC inhibitors on aggregation induced by PMA or collagen. The results indicate a role for histamine as an intracellular messenger, which in platelets promotes aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.