The segmentation of the human body organ called liver is a highly challenging problem due to the noise, artifacts and the low contrast exhibited by the anatomical structures located around the liver and that are present in digital images, generated by any modality of medical images. The main modalities are: ultrasound, nuclear emission, magnetic resonance and the gold standard called multi-slice computed tomography. In this paper, with the objective of to address this problem, we consider multi-slice computed tomography images and we propose an automatic strategy based on two phases. In the first phase, a digital filtering bank is used for diminishing the noise effect and the artifacts impact in the quality of images. In the second phase, called liver detection, we use a smart operator based on least squares support vector machines for generating both the morphology and the volume of liver. The application of this strategy allows generating the morphology of the liver in a precise and efficient manner as it was demonstrated by the metrics used to assess its performance. These results are very important in clinical-surgical processes where both the shape and volume of liver are vital for monitoring some liver diseases that can affect the normal liver physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.