Summary 1.Using field data published in the literature, we investigated pathogen dynamics and conditions of persistence in a mathematical model of the bank vole ( Clethrionomys glareolus )-Puumala hantavirus system. The host population is assumed to have a 3-year periodic cycle. The duration of very low host density is critical for virus transmission and survival. 2. Field epidemiological data strongly suggested a transmission of the hantavirus by the contaminated environment. We thus studied whether this 'indirect' transmission affected the virus persistence in the host population. 3. The model assumptions were derived from the following conditions found in the literature: (1) there is no additional mortality nor fecundity loss due to the virus in infected hosts, thus the cyclic demographical pattern is not due to the virus; (2) no remission has been observed, thus we did not consider the existence of recovered individuals; (3) adult females are territorial and juveniles disperse to find a new territory and reach sexual maturity. A fragmented landscape was assumed to occur: individuals can live in favourable or unfavourable patches. 4. The model was a compartmental model; the population was structured into susceptible or infectious individuals. We considered two age classes, juveniles and adults, and two sites (populations) connected by juvenile dispersal. 5. Model dynamics accurately predicted the cyclic trend in disease prevalence as observed in epidemiological studies. They also showed that indirect transmission significantly increased the probability for the virus to persist during the low-density period of the host population. More precisely, even a low survival rate of the virus outside the host was sufficient to decrease extinction risk of the infection by stochastic events. 6. Elasticity analysis showed a high robustness of the model to changes in the parameters of indirect transmission but a high sensitivity to changes in adult density.
The paper proposes a model explaining the spatial variation in incidence of nephropathia epidemica in Europe. We take into account the rodent dynamic features and the replicative dynamics of the virus in animals, high in the acute phase of newly infected animals and low in the subsequent chronic phase. The model revealed that only vole populations with multi-annual fluctuations allow for simultaneously high numbers of infected rodents and high proportions of those rodents in the acute excretion phase during the culminating phase of population build-up. This leads to a brief peak in exceptionally high concentrations of virus in the environment, and thereby, to human exposure. Such a mechanism suggests that a slight ecological disturbance in animal-parasite systems could result in the emergence of human diseases. Thus, the potential risk for public health due to several zoonotic diseases may be greater than previously believed, based solely on the distribution of human cases.
Owing to the rapid decline of the European mink (Mustela lutreola) in France, a national conservation action plan has been initiated, in which scientific research to improve understanding of the causes of the decline is one of the primary objectives. In order to investigate the possible role of Aleutian disease parvovirus (ADV) in decline of the species, a serologic survey was conducted from March 1996 to March 2002 in 420 free-ranging individuals of six species of small carnivores distributed in eight dé partements of southwestern France. Antibodies to ADV were detected in 17 of 75 American mink (Mustela vison), 12 of 99 European mink, 16 of 145 polecats (Mustela putorius), four of 17 stone martens (Martes foina), one of 16 pine martens (Martes martes), and three of 68 common genets (Genetta genetta). Seroprevalence was significantly higher in American mink than in other species. Seropositive individuals with gamma globulin levels Ͼ20% were observed in four European mink, four American mink, two stone martens, and one pine marten. Geographic distribution of positive animals indicates the virus has spread to all areas where European mink are found. Furthermore, a trend of increasing prevalence seems to appear in Mustela sp. sympatric with American mink. Although further investigations are necessary to evaluate the role of ADV in decline of European mink, evidence of the virus in the wild at the levels found in our study has implications for conservation of this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.