There are few methods to provide high-resolution in-situ characterization of flow in aquifers and reservoirs. We present a method that has the potential to quantify lateral and vertical (magnitude and direction) components of flow with spatial resolution of about one meter and temporal resolution of about one day. A fiber optic distributed temperature sensor is used with a novel heating system. Temperatures before heating may be used to evaluate background geothermal gradient and vertical profile of thermal diffusivity. The innovation presented is the use of variable energy application along the well, in this case concentrated heating at equally-spaced (2 m) localized areas (0.5 m). Relative to uniform warming this offers greater opportunity to estimate water movement, reduces required heating power, and increases practical length that can be heated. Numerical simulations are presented which illustrate expected behaviors. We estimate relative advection rates near the well using the times at which various locations diverge from a heating trajectory expected for pure conduction in the absence of advection. The concept is demonstrated in a grouted 600 m borehole with 300 heated patches, though evidence of vertical water movement was not seen.
Crude particulate preparations from the mammary glands of lactating mice were shown to transport calcium against a concentration gradient in the presence of ATP and mitochondrial inhibitors. Density gradient centrifugation with both sucrose and Percoll gradients indicated the presence of ATP-dependent transport in more than one membrane fraction. A Golgi-enriched membrane fraction possessed the highest specific activity of calcium transport. Digitonin, which increases the permeability of plasma membranes to calcium, did not affect this process. The Golgi fraction contained a 100,000 Dalton protein whose phosphorylation by gamma-[32P]-ATP was enhanced by a micromolar concentrations of free calcium. The phosphorylation was acid-stable and hydroxylamine-sensitive. These properties suggest that Golgi membranes in an activity secreting mammary epithelium possess a calcium transport system which resembles the calcium ATPase present in the sarcoplasmic reticulum of skeletal muscle.
Temperature anomalies can identify locations of seeps of groundwater into surface waters.However, the method's sensitivity to details such as thermometer burial depth, sediment material, seep velocity, and surface water current are largely unknown. We report on a series of laboratory flume experiments in which controlled seeps under variable sediment texture, surface currents, burial depth, and temperature differentials were imposed. The focus of the study is temperature effects at the sediment surface to a few centimeters below the sediment surface, as these locations are of particular interest when using fiber-optic distributed temperature sensors (DTS). The data demonstrate: (1) without surface water flow, seep-related thermal anomalies were apparent in all cases, i.e., the method is feasible in such cases; (2) probe burial is helpful for fine sediment although not effective with coarse bed sediment, i.e., the method is strongly sensitive to sediment properties; (3) placing a thin rubber sheet over an unburied thermal probe increases detection of seeps in some circumstances, but not in others, and is generally not as robust as probe burial; and (4) local surface flow velocity, details of probe position and depth, and seepage velocity all influence observed temperature anomalies, limiting the opportunity to quantify seepage velocity, particularly with unburied temperature sensors. Overall, these findings suggest optimal installation would be at a well-defined depth within fine sediment, that installation in gravel and coarser sediment is not suited to the method if there are any significant surface currents, and that more data would be required to obtain accurate estimates of seepage velocity, though a single sensor may be sufficient to identify the location of seepage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.