SummaryHelicobacter pylori, the causative agent of gastritis, ulcer and stomach carcinoma, infects approximately half of the worlds population. After sequencing the complete genome of two strains, 26695 and J99, we have approached the demanding task of investigating the functional part of the genetic information containing macromolecules, the proteome. The proteins of three strains of H. pylori, 26695 and J99, and a prominent strain used in animal models SS1, were separated by a high-resolution two-dimensional electrophoresis technique with a resolution power of 5000 protein spots. Up to 1800 protein species were separated from H. pylori which had been cultivated for 5 days on agar plates. Using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) peptide mass fingerprinting we have identified 152 proteins, including nine known virulence factors and 28 antigens. The three strains investigated had only a few protein spots in common. We observe that proteins with an amino acid exchange resulting in a net change of only one charge are shifted in the two-dimensional electrophoresis (2-DE) pattern. The expression of 27 predicted conserved hypothetical open reading frames (ORFs) and six unknown ORFs were confirmed. The growth conditions of the bacteria were shown to have an effect on the presence of certain proteins. A preliminary immunoblotting study using human sera revealed that this approach is ideal for identifying proteins of diagnostic or therapeutic value.
A comprehensive analysis of culture supernatant (CSN) proteins of Mycobacterium tuberculosis H37Rv was accomplished by combination of two-dimensional electrophoresis (2-DE), mass spectrometry, and N-terminal sequencing by Edman degradation. Analytical 2-DE gels resolved approximately 1250 protein spots from CSN of M. tuberculosis H37Rv, 381 of which were identified by mass spectrometry and/or Edman degradation. This study revealed 137 different proteins, 42 of which had previously been described as secreted. Comparative proteome analysis of CSN from virulent M. tuberculosis H37Rv and attenuated Mycobacterium bovis BCG Copenhagen identified 39 M. tuberculosis-specific spots containing 27 different proteins, representing candidate antigens for novel vaccines and diagnostics in tuberculosis. These included five proteins encoded by open reading frames absent from M. bovis BCG, e.g., early secretory antigen target (Esat6), as well as 22 novel differential proteins, such as acetyl-CoA C-acetyltransferase (Rv0243) and two putative Esat6-like proteins (Rv1198, Rv1793).
Peptide mass fingerprinting is a powerful tool for the identification of proteins. Trypsin is the most widely used enzyme for this purpose. Therefore, 104 protein digests from human Jurkat T cells and Mycobacterium were analyzed considering missed cleavage sites, tryptophan oxidation and N-terminal pyroglutamylation. About 90% of the matched peptides with missed cleavage sites could be classified into three groups: (i) lysine and arginine with a neighbouring proline on the carboxy-terminal side, (ii) neighboring lysines/arginines, and (iii) lysines and arginines with an aspartic acid or glutamic acid residue on either the amino- or carboxy-terminal side. The first group is already accounted for by search programs. The number of missed cleavage sites can be increased without reducing the precision of the database search by taking the other two groups into consideration. Peptides with tryptophan were observed in non, singly (+16 Da) and doubly (+32 Da) oxidized forms. The higher oxidized form was only observed with lower intensity in the presence of the lower oxidized form. Peptides with N-terminal glutamine were found always as pyroglutamate (-17 Da), and in the majority of cases in pairs with unmodified glutamine. These data can be used for the refinement of protein searches by peptide mass fingerprinting.
Proteome analysis of Jurkat T cells was performed in order to identify proteins that are modified during apoptosis. Subtractive analysis of two-dimensional gel patterns of apoptotic and nonapoptotic cells revealed differences in 45 protein spots. 37 protein spots of 21 different proteins were identified by peptide mass fingerprinting using matrix-assisted laser desorption/ionization mass spectrometry. The hnRNPs A0, A2/B1, A3, K, and R; the splicing factors p54 nrb , SRp30c, ASF-2, and KH-type splicing regulatory protein (FUSE-binding protein 2); and ␣ NAC, NS1-associated protein 1, and poly(A)-binding protein 4 were hitherto unknown to be involved in apoptosis. The putative cleavage sites of the majority of the proteins could be calculated by the molecular masses and isoelectric points in the two-dimensional electrophoresis gel, the peptide mass fingerprints, and after translation by treatment with recombinant caspase-3. Remarkably, 15 of the 21 identified proteins contained the RNP or KH motif, the best characterized RNA-binding motifs.
Pathogenic mycobacteria persist and replicate within phagosomes of host phagocytes by inhibiting phagosome maturation at an early endosome stage. The molecular basis for this behavior is not understood. To identify proteins of Mycobacterium tuberculosis unique to the intraphagosomal phase, mycobacteria were purified from phagosomes of infected murine bone marrow-derived macrophages and analyzed by high-resolution 2-DE and MS. Protein patterns of intraphagosomally grown M. tuberculosis were compared with those of broth-cultured mycobacteria. The analysis revealed 11 mycobacterial proteins exclusively detected in intraphagosomal mycobacteria. Some of these proteins are involved in metabolism and cell envelope synthesis, such as the lipid carrier protein Rv1627c, and the conserved hypothetical protein Rv1130 that shows homology to a virulence-associated protein of Legionella pneumophila. The relevance of these proteins as factors enabling intracellular survival of M. tuberculosis is being discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.