A combinatorial Hopf algebra is a graded connected Hopf algebra over a field k equipped with a character (multiplicative linear functional) ζ : H → k. We show that the terminal object in the category of combinatorial Hopf algebras is the algebra QSym of quasisymmetric functions; this explains the ubiquity of quasi-symmetric functions as generating functions in combinatorics. We illustrate this with several examples. We prove that every character decomposes uniquely as a product of an even character and an odd character. Correspondingly, every combinatorial Hopf algebra (H, ζ) possesses two canonical Hopf subalgebras on which the character ζ is even (respectively, odd). The odd subalgebra is defined by certain canonical relations which we call the generalized Dehn-Sommerville relations. We show that, for H = QSym, the generalized Dehn-Sommerville relations are the Bayer-Billera relations and the odd subalgebra is the peak Hopf algebra of Stembridge. We prove that QSym is the product (in the categorical sense) of its even and odd Hopf subalgebras. We also calculate the odd subalgebras of various related combinatorial Hopf algebras: the Malvenuto-Reutenauer Hopf algebra of permutations, the LodayRonco Hopf algebra of planar binary trees, the Hopf algebras of symmetric functions and of non-commutative symmetric functions.
We analyze the structure of the Malvenuto-Reutenauer Hopf algebra SSym of permutations in detail. We give explicit formulas for its antipode, prove that it is a cofree coalgebra, determine its primitive elements and its coradical filtration, and show that it decomposes as a crossed product over the Hopf algebra of quasi-symmetric functions. In addition, we describe the structure constants of the multiplication as a certain number of facets of the permutahedron. As a consequence we obtain a new interpretation of the product of monomial quasi-symmetric functions in terms of the facial structure of the cube. The Hopf algebra of Malvenuto and Reutenauer has a linear basis indexed by permutations. Our results are obtained from a combinatorial description of the Hopf algebraic structure with respect to a new basis for this algebra, related to the original one via Möbius inversion on the weak order on the symmetric groups. This is in analogy with the relationship between the monomial and fundamental bases of the algebra of quasi-symmetric functions. Our results reveal a close relationship between the structure of the Malvenuto-Reutenauer Hopf algebra and the weak order on the symmetric groups.
We define and characterize switching, an operation that takes two tableaux sharing a common border and``moves them through each other'' giving another such pair. Several authors, including James and Kerber, Remmel, Haiman, and Shimozono, have defined switching operations; however, each of their operations is somewhat different from the rest and each imposes a particular order on the switches that can occur. Our goal is to study switching in a general context, thereby showing that the previously defined operations are actually special instances of a single algorithm. The key observation is that switches can be performed in virtually any order without affecting the final outcome. Many known proofs concerning the jeu de taquin, Schur functions, tableaux, characters of representations, branching rules, and the Littlewood Richardson rule use essentially the same mechanism. Switching provides a common framework for interpreting these proofs. We relate Schu tzenberger's evacuation procedure to switching and in the process obtain further results concerning evacuation. We define reversal, an operation which extends evacuation to tableaux of arbitrary skew shape, and apply reversal and related mappings to give combinatorial proofs of various symmetries of Littlewood Richardson coefficients.
We illuminate the relation between the Bruhat order and structure constants for the polynomial ring in terms of its basis of Schubert polynomials. We use combinatorial, algebraic, and geometric methods, notably a study of intersections of Schubert varieties and maps between flag manifolds. We establish a number of new identities among these structure constants. This leads to formulas for some of these constants and new results on the enumeration of chains in the Bruhat order. A new graded partial order on the symmetric group which contains Young's lattice arises from these investigations. We also derive formulas for certain specializations of Schubert polynomials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.