Parasitic castration is an adaptive strategy where the parasite usurps its host's phenotype, most notably the host's reproductive effort. Though castrators are loosely known to be large relative to their hosts (compared to typical parasites), their mass has rarely been quantified and little is known about size variation, even if such variation exists. By cross-sectioning snails, we examined intra-and inter-specific variation in the parasite/ host mass of 15 trematode species that castrate the California horn snail, Cerithidea californica. Trematode species occupied 14-39% (mean = 20.3%) of an infected snail's soft tissue mass. Intraspecific variation in castrator mass fluctuated with variables that covary with energy available for host reproduction. Specifically, trematode mass was 24% higher in summer than in winter, 15% greater in snails from intertidal flats than from tidal channels, and increased with host mass to the 1.37 power (a finding contrary to that previously documented for other types of parasites). Relative body mass differed across trematode species, varying interspecifically with: (1) taxonomic family, (2) host tissue use Electronic supplementary material The online version of this article ((larger species used more types of host-tissue), (3) position in the trematode interspecific competitive dominance hierarchy (the two most subordinate species were the largest, otherwise size tended to increase with dominance), and (4) type of host used by offspring (species whose offspring infect relatively predictably occurring benthic invertebrates were larger than those infecting transient vertebrates). Our findings suggest that ecological constraints and life history trade-offs between reproduction and survival influence the mass of these very large parasites.
Invasive macroalgae pose a serious threat to coral reef biodiversity by monopolizing reef habitats, competing with native species, and directly overgrowing, and smothering reef corals. Several invasive macroalgae (Eucheuma clade E, Kappaphycus clade A and B, Gracilaria salicornia, and Acanthophora spicifera) are established within Kāne‘ohe Bay (O‘ahu, Hawai‘i, USA), and reducing invasive macroalgae cover is a coral reef conservation and management priority. Invasive macroalgae control techniques, however, are limited and few successful large-scale applications exist. Therefore, a two-tiered invasive macroalgae control approach was designed, where first, divers manually remove invasive macroalgae (Eucheuma and Kappaphycus) aided by an underwater vacuum system (“The Super Sucker”). Second, hatchery-raised juvenile sea urchins (Tripneustes gratilla), were outplanted to graze and control invasive macroalgae regrowth. To test the effectiveness of this approach in a natural reef ecosystem, four discrete patch reefs with high invasive macroalgae cover (15–26%) were selected, and macroalgae removal plus urchin biocontrol (treatment reefs, n = 2), or no treatment (control reefs, n = 2), was applied at the patch reef-scale. In applying the invasive macroalgae treatment, the control effort manually removed ∼19,000 kg of invasive macroalgae and ∼99,000 juvenile sea urchins were outplanted across to two patch reefs, totaling ∼24,000 m2 of reef area. Changes in benthic cover were monitored over 2 years (five sampling periods) before-and-after the treatment was applied. Over the study period, removal and biocontrol reduced invasive macroalgae cover by 85% at treatment reefs. Our results show manual removal in combination with hatchery raised urchin biocontrol to be an effective management approach in controlling invasive macroalgae at reef-wide spatial scales and temporal scales of months to years.
Invasive macroalgae pose a serious threat to coral reef biodiversity by monopolizing reef habitats, competing with native species, and directly overgrowing, and smothering reef corals. Several invasive macroalgae (Eucheuma clade E, Kappaphycus clade A and B, Gracilaria salicornia, and Acanthophora spicifera) are established within Kāne‘ohe Bay (O‘ahu, Hawai‘i, USA), and reducing invasive macroalgae cover is a coral reef conservation and management priority. However, invasive macroalgae control techniques are limited and few successful large-scale applications exist. Therefore, a two-tiered invasive macroalgae control approach was designed, where first, divers manually remove invasive macroalgae (Eucheuma and Kappaphycus) aided by an underwater vacuum system (“The Super Sucker”). Second, hatchery-raised juvenile sea urchins (Tripneustes gratilla), were outplanted to graze and control invasive macroalgae regrowth. To test the effectiveness of this approach in a natural reef ecosystem, four discrete patch reefs with high invasive macroalgae cover (15 – 26 %) were selected, and macroalgae removal plus urchin biocontrol (treatment reefs, n = 2), or no treatment (control reefs, n = 2), was applied at the patch reef-scale. In applying the invasive macroalgae treatment, the control effort manually removed ~ 19,000 kg of invasive macroalgae and ~ 99,000 juvenile sea urchins were outplanted across to two patch-reefs, totaling ~ 24,000 m2 of reef area. Changes in benthic cover were monitored over two years (five sampling periods) before-and-after the treatment was applied. Over the study period, removal and biocontrol reduced invasive macroalgae cover by 85 % at treatment reefs. Our results show that manual removal in combination with hatchery raised urchin biocontrol is an effective management approach for controlling invasive macroalgae at reef-wide spatial scales and temporal scales of months to years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.