Liquid vegetable oils (VO), including cottonseed, peanut, soybean, corn, and canola, were randomly interesterified with completely hydrogenated soybean or cottonseed hardstocks (vegetable oil trisaturate; VOTS) in ratios of four parts VO and one part VOTS. Analysis of the reaction products by high-performance liquid chromatography showed that at 70°C and vigorous agitation, with 0.5% sodium methoxide catalyst, the reactions were complete after 15 min. Solid-fat index (SFI) measurements made at 50, 70, 80, 92, and 104°F, along with drop melting points, indicated that the interesterified fats possess plasticity curves in the range of commercial soft tub margarine oils prepared by blending hydrogenated stocks. Shortening basestocks were prepared by randomly interesterifying palm or soybean oil with VOTS in ratios of 1 :I or 3:1 or 4:1, respectively. Blending of the interesterified basestocks with additional liquid VO yielded products having SFt curves very similar to commercial all purpose-type shortening oils made by blending hydrogenated stocks. Other studies show that fluid-type shortening oils can be prepared through blending of interesterified basestocks with liquid VO. Xray diffraction studies showed that the desirable [3' crystal structure is achieved through interesterification and blending. JAOCS 72, 379-382 (1995).
Emu oil is derived from the emu (Dromaius novaehollandiae), which originated in Australia, and has been reported to have anti-inflammatory properties. Inflammation was induced in anesthetized CD-1 mice by applying 50 microL of 2% croton oil to the inner surface of the left ear. After 2 h, the area was treated with 5 microL of emu, fish, flaxseed, olive, or liquified chicken fat, or left untreated. Animals were euthanized at 6 h postapplication of different oils, and earplugs (EP) and plasma samples were collected. Inflammation was evaluated by change in earlobe thickness, increase in weight of EP tissue (compared to the untreated ear), and induction in cytokines interleukin (IL)-1alpha and tumor necrosis factor-alpha (TNF-alpha) in EP homogenates. Although reductions relative to control (croton oil) were noted for all treatments, auricular thickness and EP weights were significantly reduced (-72 and -71%, respectively) only in the emu oil-treated group. IL-1alpha levels in homogenates of auricular tissue were significantly reduced in the fish oil (-57%) and emu oil (-70%) groups relative to the control group. The cytokine TNF-alpha from auricular homogenates was significantly reduced in the olive oil (-52%) and emu oil (-60%) treatment groups relative to the control group. Plasma cytokine levels were not changed by croton oil treatment. Although auricular thickness and weight were significantly correlated with each other (r = 0.780, P < 0.003), auricular thickness but not weight was significantly correlated with cytokine IL-alpha (r = 0.750, P < 0.006) and TNF-alpha (r = 0.690, P < 0.02). These studies indicate that topical emu oil has anti-inflammatory properties in the CD-1 mouse that are associated with decreased auricular thickness and weight, and with the cytokines IL-1alpha and TNF-alpha.
Rice bran is an underused coproduct of rice milling. The value is partially captured through extraction and refining of the rice bran oil. The capital costs have limited the ability of the U.S. rice milling industry to capture this value. However, rice bran oil has performance properties competitive to other widely used oils. An additional advantage of rice bran oil is certainly its nutritional benefits, which include a balance of fatty acids meeting AHA recommendations. Rice oil contains a mixture of antioxidants and promotes cholesterol reduction beyond that of more unsaturated oils. Its taste and performance is complementary to salad, cooking, and frying applications. This chapter reviews the source and composition of rice bran oil, its nutritional characteristics, production, and refining of the oil and its applications.
Triglyceride structures of genetically modified soybean oils high in stearic acid were determined by high-pressure liquid chromatography, and their physical properties were assessed by dilatometry and dropping point. In their natural state, these oils lack sufficient solids at 10-33°C to qualify as margarine oils. However, after random interesterification, soybean oil containing 17% stearic acid shows a solid fat index (SFI) profile and dropping point closely matching those of a liquid margarine oil. Other oils, with stearic acid contents in the range of 20-33%, showed appreciable SFI values at 10°C but lacked sufficient solids at 21.1-33.3°C. After random interesterification, these oils also exhibited SFI profiles suitable for soft tub margarine, and their drop points increased from 18-19°C to 36-38°C. JAOCS 74, 327-329 (1997).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.