Regulation of the actin cytoskeleton by microtubules is mediated by the Rho family GTPases. However, the molecular mechanisms that link microtubule dynamics to Rho GTPases have not, as yet, been identified. Here we show that the Rho guanine nucleotide exchange factor (GEF)-H1 is regulated by an interaction with microtubules. GEF-H1 mutants that are deficient in microtubule binding have higher activity levels than microtubule-bound forms. These mutants also induce Rho-dependent changes in cell morphology and actin organization. Furthermore, drug-induced microtubule depolymerization induces changes in cell morphology and gene expression that are similar to the changes induced by the expression of active forms of GEF-H1. Furthermore, these effects are inhibited by dominant-negative versions of GEF-H1. Thus, GEF-H1 links changes in microtubule integrity to Rho-dependent regulation of the actin cytoskeleton.
p21-activated kinases (Pak)/Ste20 kinases are regulated in vitro and in vivo by the small GTP-binding proteins Rac and Cdc42 and lipids, such as sphingosine, which stimulate autophosphorylation and phosphorylation of exogenous substrates. The mechanism of Pak activation by these agents remains unclear. We investigated Pak kinase activation in more detail to gain insight into the interplay between the GTPase/sphingosine binding, an intramolecular inhibitory interaction, and autophosphorylation. We present biochemical evidence that an autoinhibitory domain (ID) contained within amino acid residues 67-150 of Pak1 interacts with the carboxyl-terminal kinase domain and that this interaction is regulated in a GTPase-dependent fashion. Cdc42-and sphingosine-stimulated Pak1 activity can be inhibited in trans by recombinant ID peptide, indicating similarities in their mode of activation. However, Pak1, which was autophosphorylated in response to either GTPase or sphingosine, is highly active and is insensitive to inhibition by the ID peptide. We identified phospho-acceptor site threonine 423 in the kinase activation loop as a critical determinant for the sensitivity to autoinhibition and enzymatic activity. Phosphorylation studies suggested that the stimulatory effect of both GTPase and sphingosine results in exposure of the activation loop, making it accessible for intermolecular phosphorylation.Localized regulation of protein kinase activity is an essential means to ensure spatial and temporal control of signaling events in a cellular environment. Hormonal or other stimuli are usually necessary to switch a kinase into a catalytically competent state, allowing phosphorylation of substrates to take place. An emerging regulatory theme is that inhibitory mechanisms exist to keep protein kinases in an inactive state (1, 2), and that relief of such inhibition allows activation to occur. Kinases often act autocatalytically to phosphorylate key amino acid residues that relieve autoinhibition and enhance catalytic efficiency. Alternatively, exogenous kinases may also serve this role. However, activation must be reversed in the absence of the stimulus, and dephosphorylation by protein phosphatases is thought to mediate switching the active kinase back to an inactive or basally activated state. p21-activated kinases (Paks) 1 belong to a growing family of serine/threonine kinases involved in the control of various cellular processes, including the cell cycle, dynamics of the cytoskeleton, apoptosis, and transcription (3). Pak kinase activity is regulated by members of the Rho family of GTPases, specifically Cdc42 and Rac. These GTPases bind to Pak kinase solely in their active forms, i.e. the GTP-bound state, resulting in stimulation of the kinase activity both in vitro and in vivo. The molecular details of how the GTPases exert their effect on the kinase to induce its activation remain unclear, however. Several lines of evidence suggested that the amino-terminal nonkinase region of Pak, in which the Cdc42/Rac-binding site is loca...
In this study, we show that phosphorylated 3-phosphoinositide-dependent kinase 1 (PDK1) phosphorylates p21-activated kinase 1 (PAK1) in the presence of sphingosine. We identify threonine 423, a conserved threonine in the activation loop of kinase subdomain VIII, as the PDK1 phosphorylation site on PAK1. Threonine 423 is a previously identified PAK1 autophosphorylation site that lies within a PAK consensus phosphorylation sequence. After pretreatment with phosphatases, autophosphorylation of PAK1 occurred at all major sites except threonine 423. A phosphothreonine 423-specific antibody detected phosphorylation of recombinant, catalytically inactive PAK1 after incubation with wild-type PAK1, indicating phosphorylation of threonine 423 occurs by an intermolecular mechanism. The biological significance of PDK1 phosphorylation of PAK1 at threonine 423 in vitro is supported by the observation that these two proteins interact in vivo and that PDK1-phosphorylated PAK1 has an increased activity toward substrate. An increase of phosphorylation of catalytically inactive PAK1 was observed in COS-7 cells expressing wild-type, but not catalytically inactive, PDK1 upon elevation of intracellular sphingosine levels. PDK1 phosphorylation of PAK1 was not blocked by pretreatment with wortmannin or when PDK1 was mutated to prevent phosphatidylinositol binding, indicating this process is independent of phosphatidylinositol 3-kinase activity. The data presented here provide evidence for a novel mechanism for PAK1 regulation and activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.