Aims Increased complexity in cardiac surgery over the last decades necessitates more precise preoperative planning to minimize operating time, to limit the risk of complications during surgery and to aim for the best possible patient outcome. Novel, more realistic, and more immersive techniques, such as three-dimensional (3D) virtual reality (VR) could potentially contribute to the preoperative planning phase. This study shows our initial experience on the implementation of immersive VR technology as a complementary research-based imaging tool for preoperative planning in cardiothoracic surgery. In addition, essentials to set up and implement a VR platform are described. Methods Six patients who underwent cardiac surgery at the Erasmus Medical Center, Rotterdam, The Netherlands, between March 2020 and August 2020, were included, based on request by the surgeon and availability of computed tomography images. After 3D VR rendering and 3D segmentation of specific structures, the reconstruction was analysed via a head mount display. All participating surgeons (n = 5) filled out a questionnaire to evaluate the use of VR as preoperative planning tool for surgery. Conclusion Our study demonstrates that immersive 3D VR visualization of anatomy might be beneficial as a supplementary preoperative planning tool for cardiothoracic surgery, and further research on this topic may be considered to implement this innovative tool in daily clinical practice. Lay summary Over the past decades, surgery on the heart and vessels is becoming more and more complex, necessitating more precise and accurate preoperative planning. Nowadays, operative planning is feasible on flat, two-dimensional computer screens, however, requiring a lot of spatial and three-dimensional (3D) thinking of the surgeon. Since immersive 3D virtual reality (VR) is an upcoming imaging technique with promising results in other fields of surgery, we aimed in this study to explore the additional value of this technique in heart surgery. Our surgeons planned six different heart operations by visualizing computed tomography scans with a dedicated VR headset, enabling them to visualize the patient’s anatomy in an immersive and 3D environment. The outcomes of this preliminary study are positive, with a much more reality-like simulation for the surgeon. In such, VR could potentially be beneficial as a preoperative planning tool for complex heart surgery.
Objective: Surgical left atrial appendage (LAA) closure using epicardial clips has become popular in stroke prevention in patients with atrial fibrillation. Optimal placement of the clip is essential to achieve complete LAA occlusion and to prevent complications due to compression of the circumflex artery. We determine the added value of immersive virtual reality (VR) in accurately assessing LAA base size and selection of an appropriately sized clip. Methods: We studied the feasibility of measuring the LAA base using VR and conventional computed tomography (CT). A retrospective analysis was performed of LAA base measurements in 15 patients who had undergone thoracoscopic LAA clipping. Subsequently, we compared the placed clip size with imaging-acquired LAA base size to retrospectively evaluate intraprocedural sizing. Results: We successfully applied a VR platform to measure LAA base size. The median LAA base size measured in CT (23.8 mm, interquartile range [IQR] 22.3 to 26.4 mm) and intracardial virtual reality (23.4 mm, IQR 21.6 to 25.5 mm) did not differ significantly ( P = 0.416). VR measurements of the LAA base in surgeon's view (25.7 mm, IQR 24.2 to 29.2) were significantly higher than those of 2-dimensional CT ( P = 0.037) and intracardial 3-dimensional (3D) VR ( P < 0.05) measurements. All measurements differed significantly with placed clip sizes ( P < 0.05). There were no clip malpositioning-related events. Conclusions: Immersive VR is a feasible method for obtaining anatomical information on LAA base size. In this retrospective analysis, CT and VR-based measurements of LAA base size differed significantly from intraoperatively placed LAA clips, indicating potential oversizing when measured intraoperatively. Using intuitive 3D VR-based imaging might be a useful method to assist in accurate preprocedural sizing of LAA base and can potentially prevent oversizing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.