The Cretaceous-Paleogene (K-Pg) mass extinction is marked globally by elevated concentrations of iridium, emplaced by a hypervelocity impact event 66 million years ago. Here, we report new data from four independent laboratories that reveal a positive iridium anomaly within the peak-ring sequence of the Chicxulub impact structure, in drill core recovered by IODP-ICDP Expedition 364. The highest concentration of ultrafine meteoritic matter occurs in the post-impact sediments that cover the crater peak ring, just below the lowermost Danian pelagic limestone. Within years to decades after the impact event, this part of the Chicxulub impact basin returned to a relatively low-energy depositional environment, recording in unprecedented detail the recovery of life during the succeeding millennia. The iridium layer provides a key temporal horizon precisely linking Chicxulub to K-Pg boundary sections worldwide.
Results of a systematic study concerning non-spectral interferences observed with a commercially available high resolution ICP-mass spectrometer are reported and compared to observations made with a quadrupole-based instrument. In general, matrix effects were observed to be to a large extent comparable for both instruments used. In all cases, the matrix-induced signal suppression or enhancement was seen to depend in a regular way on the mass number of the nuclides monitored. In most cases, the ionization potential of the nuclides has little or no influence on the extent of suppression or enhancement. For As, Se and Te, the introduction of 2.5% ethanol, 0.5 mol/l H(2)SO(4), or to a lesser extent 0.5 mol/l H(3)PO(4), leads to an exceptional increase in the signal intensity for both instruments. Registration of signal behaviour plots (signal intensity as a function of the nebulizer gas flow rate) in different matrices revealed that both the height of the plot and the optimum nebulizer gas flow rate are a function of the matrix composition. Finally, no indication was found that the acceleration of the extracted ions over 8000 V with the high resolution instrument would lead to an alleviation of space charge effects when compared to a quadrupole-based ICP-mass spectrometer.
This study presents subdaily resolved chemical records through fossil mollusk shell calcite. Trace element profiles resolve periodic variability across ~40‐μm‐thin daily growth laminae in a Campanian Torreites sanchezi rudist bivalve. These high‐resolution records are combined with seasonally resolved stable isotope and trace element records that allow shell‐chemical variability to be discussed on both seasonal and daily scale. A combination of layer counting, spectral analysis of chemical cyclicity and chemical layer counting shows that the rudist precipitated 372 daily laminae per year, demonstrating that length of day has increased since the Late Cretaceous, as predicted by astronomical models. This new approach to determine the length of a solar day in geologic history through multiproxy chemical records at subdaily resolution yields considerably more control on the uncertainty of this estimate. Daily chemical variability exceeds seasonal variability in our records, and cannot be explained by diurnal temperature changes. Instead, we postulate that rudist shell chemistry is driven on a daily scale by changes in light intensity. These results together with those of stable isotope analyses provide strong evidence that Torreites rudists had photosymbionts. Bivalve shell calcite generally preserves well. Therefore, this study paves the way for daily‐scale reconstructions of paleoenvironment and sunlight intensity on geologic time scales from bivalve shells, potentially allowing researchers to bridge the gap between climate and weather reconstructions. Such reconstructions improve shell chronologies, document environmental change in warm ecosystems, and widen our understanding of the magnitude of short‐term changes during greenhouse climates.
Abstract. The Campanian age (Late Cretaceous) is characterized by a warm greenhouse climate with limited land-ice volume. This makes this period an ideal target for studying climate dynamics during greenhouse periods, which are essential for predictions of future climate change due to anthropogenic greenhouse gas emissions. Well-preserved fossil shells from the Campanian (±78 Ma) high mid-latitude (50∘ N) coastal faunas of the Kristianstad Basin (southern Sweden) offer a unique snapshot of short-term climate and environmental variability, which complements existing long-term climate reconstructions. In this study, we apply a combination of high-resolution spatially resolved trace element analyses (micro-X-ray fluorescence – µXRF – and laser ablation inductively coupled plasma mass spectrometry – LA-ICP-MS), stable isotope analyses (IRMS) and growth modeling to study short-term (seasonal) variations recorded in the oyster species Rastellum diluvianum from the Ivö Klack locality. Geochemical records through 12 specimens shed light on the influence of specimen-specific and ontogenetic effects on the expression of seasonal variations in shell chemistry and allow disentangling vital effects from environmental influences in an effort to refine paleoseasonality reconstructions of Late Cretaceous greenhouse climates. Growth models based on stable oxygen isotope records yield information on the mode of life, circadian rhythm and reproductive cycle of these extinct oysters. This multi-proxy study reveals that mean annual temperatures in the Campanian higher mid-latitudes were 17 to 19 ∘C, with winter minima of ∼13 ∘C and summer maxima of 26 ∘C, assuming a Late Cretaceous seawater oxygen isotope composition of −1 ‰ VSMOW (Vienna standard mean ocean water). These results yield smaller latitudinal differences in temperature seasonality in the Campanian compared to today. Latitudinal temperature gradients were similar to the present, contrasting with previous notions of “equable climate” during the Late Cretaceous. Our results also demonstrate that species-specific differences and uncertainties in the composition of Late Cretaceous seawater prevent trace element proxies (Mg∕Ca, Sr∕Ca, Mg∕Li and Sr∕Li) from being used as reliable temperature proxies for fossil oyster shells. However, trace element profiles can serve as a quick tool for diagenesis screening and investigating seasonal growth patterns in ancient shells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.