While the machine learning literature dedicated to fully automated reasoning algorithms is abundant, the number of methods enabling the inference process on the basis of previously defined knowledge structures is scanter. Fuzzy Cognitive Maps (FCMs) are neural networks that can be exploited towards this goal because of their flexibility to handle external knowledge. However, FCMs suffer from a number of issues that range from the limited prediction horizon to the absence of theoretically sound learning algorithms able to produce accurate predictions. In this paper, we propose a neural network system named Shortterm Cognitive Networks that tackle some of these limitations. In our model weights are not constricted and may have a causal nature or not. As a second contribution, we present a nonsynaptic learning algorithm to improve the network performance without modifying the previously defined weights. Moreover, we derive a stop condition to prevent the learning algorithm from iterating without decreasing the simulation error.
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.