The long term vision of the Autonomous Robot Evolution (ARE) project is to create an ecosystem of both virtual and physical robots with evolving brains and bodies. One of the major challenges for such a vision is the need to construct many unique individuals without prior knowledge of what designs evolution will produce. To this end, an autonomous robot fabrication system for evolutionary robotics, the Robot Fabricator, is introduced in this paper. Evolutionary algorithms can create robot designs without direct human interaction; the Robot Fabricator will extend this to create physical copies of these designs (phenotypes) without direct human interaction. The Robot Fabricator will receive genomes and produce populations of physical individuals that can then be evaluated, allowing this to form part of the evolutionary loop, so robotic evolution is not confined to simulation and the reality gap is minimised. In order to allow the production of robot bodies with the widest variety of shapes and functional parts, individuals will be produced through 3D printing, with prefabricated actuators and sensors autonomously attached in the positions determined by evolution. This paper presents details of the proposed physical system, including a proof-ofconcept demonstrator, and discusses the importance of considering the physical manufacture for evolutionary robotics.
Besides the life-as-it-could-be driver of artificial life research there is also the concept of extending natural life by creating hybrids or mixed societies that are built from both natural and artificial components. In this paper, we motivate and present the research program of the project flora robotica. We present our concepts of control, hardware design, modeling, and human interaction along with preliminary experiments. Our objective is to develop and to investigate closely linked symbiotic relationships between robots and natural plants and to explore the potentials of a plant-robot society able to produce architectural artifacts and living spaces. These robot-plant bio-hybrids create synergies that allow for new functions of plants and robots. They also create novel design opportunities for an architecture that fuses the design and construction phase. The bio-hybrid is an example of mixed societies between 'hard artificial and 'wet natural life, which enables an interaction between natural and artificial ecologies. They form an embodied, selforganizing, and distributed cognitive system which is supposed to grow and develop over long periods of time resulting in the creation of meaningful architectural structures. A key idea is to assign equal roles to robots and plants in order to create a highly integrated, symbiotic system. Besides the gain of knowledge, this project has the objective to create a bio-hybrid system with a defined function and application -growing architectural artifacts.
Hybrid societies are self-organizing, collective systems, which are composed of different components, for example, natural and artificial parts (bio-hybrid) or human beings interacting with and through technical systems (socio-technical). Many different disciplines investigate methods and systems closely related to the design of hybrid societies. A stronger collaboration between these disciplines could allow for re-use of methods and create significant synergies. We identify three main areas of challenges in the design of self-organizing hybrid societies. First, we identify the formalization challenge. There is an urgent need for a generic model that allows a description and comparison of collective hybrid societies. Second, we identify the system design challenge. Starting from the formal specification of the system, we need to develop an integrated design process. Third, we identify the challenge of interdisciplinarity. Current research on self-organizing hybrid societies stretches over many different fields and hence requires the re-use and synthesis of methods at intersections between disciplines. We then conclude by presenting our perspective for future approaches with high potential in this area.
Soft robotics is a growing field of research and one of its challenges is how to efficiently design a controller for a soft morphology. This paper presents a marine soft robot inspired by the ghost knifefish that swims on the water surface by using an undulating fin underneath its body. We investigate how propagating wave functions can be evolved and how these affect the swimming performance of the robot. The fin and body of the robot are constructed from silicone and six wooden fin rays actuated by servo motors. In order to bypass the reality gap, which would necessitate a complex simulation of the fish, we implemented a Covariance Matrix Adaptation Evolution Strategy (CMA-ES) directly on the physical robot to optimize its controller for travel speed. Our results show that evolving a simple sine wave or a Fourier series can generate controllers that outperform a hand programmed controller. The results additionally demonstrate that the best evolved controllers share similarities with the undulation patterns of actual knifefish. Based on these results we suggest that evolution on physical robots is promising for future application in optimizing behaviors of soft robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.