Current-voltage characteristics of diode structures with an active layer of a zinc oxide nanoparticle-polystyrene hybrid material (1:2 by weight) deposited by spin coating from solution were investigated. Aluminum and poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate were used as electrodes. After a forming step, the conduction under reversed bias voltage can be raised or lowered in a gradual and reversible manner by applying forward and reverse bias voltages, respectively. Electrically induced switching between states with high and lower conductivities is possible on a time scale of 100ms and the conduction levels remain stable for over 1h.
Articles you may be interested in Sub-band transport mechanism and switching properties for resistive switching nonvolatile memories with structure of silver/aluminum oxide/p-type silicon Appl. Phys. Lett. 106, 063506 (2015); 10.1063/1.4908540Forming free resistive switching in graphene oxide thin film for thermally stable nonvolatile memory applications
Electronic memory effects in metal-insulator-metal devices with aluminum and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) as electrodes and a solution processed active layer consisting of zinc oxide (ZnO) nanoparticles embedded in a matrix of poly(3-hexylthiophene) or polystyrene are investigated. After an initial forming process, the devices show a reversible change in conductivity. The forming process itself is interpreted in terms of desorption of molecular oxygen from the ZnO nanoparticle surface, induced by injection of holes via the PEDOT:PSS contact, leading to a higher n-type conductivity via interparticle ZnO contacts. The forming can also be induced with ultraviolet light and the process is studied with electron paramagnetic resonance, photoinduced absorption spectroscopy, and field effect measurements. Also, the composition of the active layer is varied and the memory effects can by influenced by changing the ZnO content and the polymer, allowing for data storage with lifetime >14h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.