Cold start driving cycles exhibit an increase in friction losses due to the low temperatures of metal and media compared to normal operating engine conditions. These friction losses are responsible for up to 10% penalty in fuel economy over the official drive cycles like the New European Drive Cycle (NEDC), where the temperature of the oil even at the end of the 1180 s of the drive cycle is below the fully warmed up values of between 100°C and 120°C. At engine oil temperatures below 100°C the water from the blow by condensates and dilutes the engine oil in the oil pan which negatively affects engine wear. Therefore engine oil temperatures above 100°C are desirable to minimize engine wear through blow by condensate. The paper presents a new technique to warm up the engine oil that significantly reduces the friction losses and therefore also reduces the fuel economy penalty during a 22°C cold start NEDC. Chassis dynamometer experiments demonstrated fuel economy improvements of over 7% as well as significant emission reductions by rapidly increasing the oil temperature. Oil temperatures were increased by up to 60°C during certain parts of the NEDC. It is shown how a very simple sensitivity analysis can be used to assess the relative size or efficiency of different heat transfer passes and the resulting fuel economy improvement potential of different heat recovery systems system. Due to its simplicity the method is very fast to use and therefore also very cost effective. The method demonstrated a very good correlation for the fuel consumption within ±1% compared to measurements on a vehicle chassis roll.
The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.