Summary: Tablet is a lightweight, high-performance graphical viewer for next-generation sequence assemblies and alignments. Supporting a range of input assembly formats, Tablet provides high-quality visualizations showing data in packed or stacked views, allowing instant access and navigation to any region of interest, and whole contig overviews and data summaries. Tablet is both multi-core aware and memory efficient, allowing it to handle assemblies containing millions of reads, even on a 32-bit desktop machine.Availability: Tablet is freely available for Microsoft Windows, Apple Mac OS X, Linux and Solaris. Fully bundled installers can be downloaded from http://bioinf.scri.ac.uk/tablet in 32- and 64-bit versions.Contact: tablet@scri.ac.uk
Summary: TOPALi v2 simplifies and automates the use of several methods for the evolutionary analysis of multiple sequence alignments. Jobs are submitted from a Java graphical user interface as TOPALi web services to either run remotely on high-performance computing clusters or locally (with multiple cores supported). Methods available include model selection and phylogenetic tree estimation using the Bayesian inference and maximum likelihood (ML) approaches, in addition to recombination detection methods. The optimal substitution model can be selected for protein or nucleic acid (standard, or protein-coding using a codon position model) data using accurate statistical criteria derived from ML co-estimation of the tree and the substitution model. Phylogenetic software available includes PhyML, RAxML and MrBayes.Availability: Freely downloadable from http://www.topali.org for Windows, Mac OS X, Linux and Solaris.Contact: iain.milne@scri.ac.uk
BackgroundThe potato genome sequence derived from the Solanum tuberosum Group Phureja clone DM1-3 516 R44 provides unparalleled insight into the genome composition and organisation of this important crop. A key class of genes that comprises the vast majority of plant resistance (R) genes contains a nucleotide-binding and leucine-rich repeat domain, and is collectively known as NB-LRRs.ResultsAs part of an effort to accelerate the process of functional R gene isolation, we performed an amino acid motif based search of the annotated potato genome and identified 438 NB-LRR type genes among the ~39,000 potato gene models. Of the predicted genes, 77 contain an N-terminal toll/interleukin 1 receptor (TIR)-like domain, and 107 of the remaining 361 non-TIR genes contain an N-terminal coiled-coil (CC) domain. Physical map positions were established for 370 predicted NB-LRR genes across all 12 potato chromosomes. The majority of NB-LRRs are physically organised within 63 identified clusters, of which 50 are homogeneous in that they contain NB-LRRs derived from a recent common ancestor.ConclusionsBy establishing the phylogenetic and positional relationship of potato NB-LRRs, our analysis offers significant insight into the evolution of potato R genes. Furthermore, the data provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from Solanum species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.