This thesis examines the use of thrusters and solar sails for spacecraft formation keeping control at the Earth-Moon L4 point. Particular emphasis was placed on the study of underactuated control, in which fewer control inputs than the system's degrees of freedom are available. A linear LQR control scheme, an integral augmented sliding mode controller and a bang-bang controller were applied to the dynamic spacecraft system. The nonlinear controllers produced errors falling with tighter tolerances than the linear controllers in the perturbed environment. Performing similarly well as the underactuated thrusters system was the solar-sails-controlled spacecraft formation using a bang-bang controller. This shows that solar sails could be a viable propellantless technique for relative control. A linear control technique was able to bound errors to within a couple of hundred metres, using a hybrid propulsion system. Of the cases studied, only the fully-actuated thrusters-based system was able to explicitly track a circular trajectory, but had [Delta]V requirement of more than 100 times greater than that needed for tracking the natural, elliptical trajectory.
This thesis examines the use of thrusters and solar sails for spacecraft formation keeping control at the Earth-Moon L4 point. Particular emphasis was placed on the study of underactuated control, in which fewer control inputs than the system's degrees of freedom are available. A linear LQR control scheme, an integral augmented sliding mode controller and a bang-bang controller were applied to the dynamic spacecraft system. The nonlinear controllers produced errors falling with tighter tolerances than the linear controllers in the perturbed environment. Performing similarly well as the underactuated thrusters system was the solar-sails-controlled spacecraft formation using a bang-bang controller. This shows that solar sails could be a viable propellantless technique for relative control. A linear control technique was able to bound errors to within a couple of hundred metres, using a hybrid propulsion system. Of the cases studied, only the fully-actuated thrusters-based system was able to explicitly track a circular trajectory, but had [Delta]V requirement of more than 100 times greater than that needed for tracking the natural, elliptical trajectory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.