Six-coordinate Pt(IV)-complexes are prominent prodrug candidates for the treatment of various cancers where, upon two-electron reduction and loss of two axial ligands, they form more familiar, pharmacologically active four-coordinate Pt(II) drugs. A series of electrochemical experiments coupled with extensive density functional calculations has been employed to elucidate the mechanism for the two-electron reduction of Pt(IV)(NH3)2Cl2L2 to Pt(II)(NH3)2Cl2 (L = CH3COO(-), 1; L = CHCl2COO(-), 2; L = Cl(-), 3). A reliable estimate for the normal reduction potential E(o) is derived for the electrochemically irreversible Pt(IV) reduction and is compared directly to the quantum chemically calculated reduction potentials. The process of electron transfer and Pt-L bond cleavage is found to occur in a stepwise fashion, suggesting that a metastable six-coordinate Pt(III) intermediate is formed upon addition of a single electron, and the loss of both axial ligands is associated with the second electron transfer. The quantum chemically calculated reduction potentials are in excellent agreement with experimentally determined values that are notably more positive than peak potentials reported previously for 1-3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.